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Abstract

This document describes the effort involved in moving

the AdaO compiler and interpreter developed by Capt. Scott

E. Ferguson as part of the AFIT syntax directed editor

environment from a microcomputer to the VAX 11/780.

As part of this effort the compiler and interpreter

were expanded to accept a larger suset of Ada. The

compiler and interpreter work with an abstract syntax

representation of a computer program produced by the syntax

directed editor. This abstract representation, which is

guaranteed to be syntactically correct, makes the compiler

much easier to write and understand. The compiler in a

top-down compiler but no backtracking is needed since the

program is known to be syntactically correct. The

interpreter is able to use the abstract representation to

* igive the user an interactive display of the program during

execution.

Designs to allow overloading of names and operators,

and passing parameters to subprograms are also presented.

/

~vii

i.



INTRODUCT ION

1.0 INTRODUCTION

Ada is the new computer programming language

developed by the Department of Defense. Motivated by

desires for increased productivity and lower costs,

requirements for a programming support environment were

also developed (Ref 8). This thesis is one of a pair in a

continuing effort to develop such an environment. This

effort is based on a prototype environment developed by

Capt Scott Ferguson (Ref 9). His effort is centered

around a syntax directed editor which creates an abstract

syntax representation of a program which the othet tools

in the support environment work with. This effort

* continues the development of the compiler and interpreter

within this environment.

1.1 PRIMARY OBJECTIVE

The principle objective of this thesis effort was to

continue the development of the AFIT Ada programming

support environment originally developed by Scott E.

Ferguson. This involved an analysis of the Ada

programming language and the work done by Ferguson. This

was done with the intent of moving the support environment

from the microprocessor it was developed on to the VAX

11/780 and expanding the subset of Ada that it would

accept and compile.

|1



INTRODUCTION

Since the s-ppr, envronment included several basic

tools, the ett r twb iivided into two separate but

related thesib ett... . The basic tools included in the

original system are a syntax directed editor, a program

lister, a compiler code generator, and an interpreter to

run the compiled program. This document describes the

effort involved in getting the code generator and

interpreter tools of the support environment we ..rg on

the VAX 11/780 and the expansion of the Ada st nt the

compiler would accept. Also included is brief

discussion of the other tools in the support env-o-nment

and how they interface with the compiler.

1.1.1 SECONDARY OBJECTIVES

The main secondary objective was to enlarge the

subset of Ada the compiler would accept. The features to

be added are new data types, functions and some new

statement forms. Since the original effort was named the

AdaO compiler by Ferguson, this effort was called the Adal

compiler.

The other secondary objective was to design

algorithms and data structures to support a later

implementation of overloading of names and operators,

parameters for functions and procedures, packages, and

user defined data types into the expanded Adal compiler.

This objective was left as designing the algorithms and

2



* INTRODUCTION

data structures since many problems had to be solved

before any of the algorithms could be implemented. Time

restrictions placed on the thesis effort rather than

complexity of the algorithms was the main consideration.

1.2 BACKGROUND OF THE ADAO COMPILER

The current Ada0 compiler accepts only a small subset

of the full Ada language. Included in this subset are

integer variables, parameterless procedures, integer

arithmetic, Boolean expressions involving integer

relations, and many of the statement forms of Ada. The

statement forms included are assignment, procedure calls,

if statement and while loops. The Boolean expressions

included are integer comparisons and the Boolean operators

and, or , and not.

1.3 OVERVIEW OF THE THESIS

To be able to properly discuss improvements to the

AdaO compiler and support environment a discussion of the

features of Ada itself is required. Chapter 2 provides

this discussion and a short discussion of the Adal subset.

Chapter 3 is a discussion of the support environment and

the tools as currently implemented. These tools include a

syntax directed editor, a program lister, the compiler,

and an interpreter/run time mechanism. Chapter 4 provides

3



INTRODUCTION

a more detailed discussion of the current Adal compiler

and how the extensions were implemented. Chapter 5

provides the details of the designs done for this thesis

effort. These include a semantic analyzer to handle the

resolution of overloaded names and operators, a way to

handle passing of parameters that will allow in and out

parameters and not be limited to simple types, and the

data structures to implement user defined data types and

allow for package elaboration and inclusion. Chapter 6

describes the ultimate goals and environment of the Ada

compiler. Chapter 7 is a discussion of my conclusions

from this thesis effort and my recommendations for future

work.

4
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ADA

2.1 BACKGROUND OF ADA

Ada is the new computer programming language

developed for the Department of Defense. The driving

force behind its development is the the rapidly increasing

cost of software, both new and modified. These increasing

costs are further amplified by the fact that many

different and incompatible computers are used within the

Department of Defense. These differing computers have led

to the use of a plethora of special purpose languages to

program them.

This causes problems in training since a programmer

may need to learn a new language or system when he changes

jobs. This also causes the programmer to be less

efficient until he comes up to speed under the new system.

In fact if the languages are different enough the

programmer may have to begin almost at square one.

This also means that a routine developed for one

system must be rewritten, if it is needed on a different

system. Even programs written in high level languages,

like FORTRAN, can require changes to work on different

computers. These changes can be quite extensive even if

both computers have FORTRAN compilers. A standardized

language and working environment, as Ada is intended to

provide, could help to reduce or even eliminate these

problems. One study estimates the savings to be in excess

of one billion dollars per year (Ref 10).

5



ADA

For these reasons and others that will be brought out

later, the Department of Defense developed criteria for a

standard and universal language. The search for this new

language began with existing computer languages. Several

of the more popular languages were examined and each was

found to be deficient in one respect or another. Since no

existing language could be used, the Department of Defense

held a four contractor competitive design effort to

develop the new language. This competition resulted in

the development of Ada.

2.2 GOALS OF ADA

The main goal of Ada is to help reduce the costs

involved in writing and modifying software. This goal is

to be attained in two separate but interacting ways. The

first is through the use of a standard language that has

many features to aid the programmer. The other is through

a standardized working environment. The requirements for

this environment are laid out in "STONEMAN, Requirements

for Ada Programming Support Environments" Feb 1980. The

purpose stated for the support environment is to "support

the development and maintenance of Ada applications

software through its life cycle" (Ref 8). The syntax

directed editor mentioned earlier could be one of these

tools.

6



ADA

2.3 FEATURES OF ADA

The syntax directed environment will help make Ada

more popular among computer programmers but the many

features of the language will do more to stimulate its

use. Ada has many interesting features several of which

should be discussed. These features are packages,

overloading, tasks, separate compilation, and

universality.

2.3.1 PACKAGES

Packages are one of the more interesting features

included in Ada. They are one form of Ada program units.

Their intent is to allow the specification of groups of

logically related entities. Packages are allowed to

contain their own data structures and types, and the

subroutines to manipulate them. The pieces of a package

can be visible to an outside program, invisible to it, or

a combination of the two.

Their intent is to allow another programmer to use

the data structures and types, and the manipulating

routines declared in the package without knowing or caring

how they are implemented. Keeping the structure of a data

type invisible to the programmer, even though the type

itself is visible, is intended to prevent the programmer

from directly manipulating the data which can create

7



ADA

problems for other routines in the package.

One benefit of this is a programmer can write and

compile the package once and make it available for use by

other unrelated programs. After the package is written,

its users need not care how the data is stored or

manipulated but only that the results obtained from the

package are correct. Since a user does not care how a

package is implemented, the package body can be changed

and if done properly the change will not affect any of the

programs using the package.

package complex-arithmetic is

type complexnumber is private;

function "+"(A,B : complexnumber)
return complexnumber;

function "-"(A,B : complexnumber)
return complexnumber;

function create_complex(R,I : integer)
return complexnumber;

private

type complexnumber is
record
real_part : integer;
complex_part : integer;

end record;

end complex;

4Figure 2-1. Sample Package Declaration

An example is a package to do arithmetic on complex

numbers. The data type used for the complex numbers could

be a record, an array, or even a linked list. This type

8



ADA

could be changed from one to the other without any affect,

except possibly execution speed, being seen by any user.

A sample package is declaration is shown in figure 2-1.

This interface of the package is all the user needs

to see and know about the package. Declaring the type

complexnumber as private means the user can declare

variables to be of type complex but must use the functions

provided to manipulate them. The user is allowed to do

assignment and membership tests (Ref 6: 7-6). This

package exhibits another feature of Ada, overloading.

2.3.2 OVERLOADING

. Overloading of names and operators another feature of

interest included in Ada. Overloading, as defined by the

Ada standard, is a relatively new concept. Unlike Pascal

and other block structured languages which hide previous

declarations of a name when the name is redeclared, a

redeclaration of a name in Ada only hides previous

declarations of the name which are of the same type. The

idea is to allow one name or symbol to have several

different meanings depending on the context of its use.

To be valid the context must make the use unambiguous. If

two or more meanings are consistent with the context then

the use is erroneous and must be modified in some way.

In the previous example the operators "+" and "-" are

overloaded to allow their use with complexnumbers. An

9
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overloaded operator can be used in the usual manner. For

example the following code fragment will cause two

complex-numbers to be added using the "+" operator and the

result assigned to another complexnumber.

a,b,c : complexnumber;

a := b + c;

The idea is to make programs more readable and

understandable for other programmers. In other languages

the addition of two complex numbers would have to be done

using a function or procedure with a name like

complexaddition. This would make the program readable

but some programmers would shorten the name to someless

meaningful mnemonic like comp_add.

The designers' of Ada felt that the "+" operator

could have meanings other than standard addition with

respect to non-standard types and that it should be

allowed to express that meaning. They also allow a user

to overload and hide the standard meaning of these

operators if they wish to define their own functions to do

addition.

2.3.3 TASKS

Tasks are the next feature of interest included in

Ada. Since Ada is intended to be used mainly in the area

of embedded computers by the Department of Defense, this

feature is very important. These embedded computer

10
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systems usually require several functions or processes to

be performed simultaneously. Tasks allow the programmer

to define several processes and allow them to execute in

parallel either on a single processor or on multiple

processors.

Tasks are allowed to communicate or synchronize

through the rendezvous feature. Since tasking can be

implemented in several different ways the Ada standard

says that any program that depends on the implementation

is erroneous.

An interesting feature of tasks is that they can be

defined as a type and used in data declarations. This

allows the user to define arrays of tasks, records that

contain tasks, or any other legal use of a data type. The

task type is limited so assignment and predefined

comparison are not allowed. Examples of tasks can be

found in the Ada Reference Manual (Ref 7: 9-20).

2.3.4 SEPARATE COMPILATION

Separate compilation is another feature of interest.

Separate compilation is a term that has been misused in

t the past. Many languages have claimed to allow separate

compilation when what they truly did was independent

compilation. The difference lies in the semantic checking

that is done.

11
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Independent compilation allows a function or

procedure to be compiled independently of the rest of the

program. The idea was to allow a function or procedure to

be used by several different programs and eliminate the

need for each to compile the common parts. Though this

saves time, it causes other problems since a using program

can misuse an external function and still compile

correctly. The error generated on execution may show no

relation to that misuse and cause the programmer to waste

valuable time debugging the problem.

Separate compilation requires that all semantic

checks be done as if the separate pieces were all compiled

together as one unit. This requires the compiler to have

the specifications of those pieces available when they are

needed. This difference is pointed out quite nicely in the

* preliminary reference manual (Ref 7: 10-1).

2.3.5 UNIVERSALITY AND STANDARDIZATION

Universality is the final feature and perhaps the one

with the most promise for helping reduce the costs of

software. This feature is being enforced by the

Department of Defense. Any Ada compiler must pass a

series of validation tests to ensure it is neither a

subset compiler nor a superset compiler. Only after it

passes these tests is it allowed to be called an Ada

compiler. An exception to this is allowed for any subset

12
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compiler that is still in the development stage and

eventually will become a full Ada compiler.

This standardization should help reduce the

retraining problem encountered when a 3rogrammer changes

jobs. Since it is intended that most tools in use in the

Ada support environment be written in Ada, they will be

fully transportable. This will further reduce the

retraining problem.

Another benefit of standardization is the incentive

it gives programmers to write useful programs and

packages, since the potential market is much larger than

for a similar program written for one machine or family of

machines. Hopefully this will lead to the emergence of

large software houses and catalogs from which a programmer

can order the packages and subprograms needed to do a

project. The packages and subprograms can then be

compiled with new code to produce a new pr c:am much more

quickly.

2.4 SCOPE OF THE THESIS

This section outlines the scope of the thesis effort.

The scope can be broken into three parts, the features of

Ada that were implemented, the features of Ada that

designs were done for, and the features of Ada that were

ignored for this thesis effort. Since Ada is such a large

language and time was limited a workable subset of the it

13
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had to be chosen and some of the features had to be left

out.

2.4.1 FEATURES IMPLEMENTED

The features of Ada implemented in the Adal compiler

included the AdaO subset, new data types, functions, the

remaining operators, and some of the remaining statement

forms. These features are explained in more detail below.

2.4.1.1 FEATURES OF THE ADAO SUBSET

The first things to be included in the Adal subset

were any features already implemented through the AdaC

subset. Since this thesis effort is based on the AdaO

compiler, developed by Scott Ferguson, all features of it

were included. The code from the AdaO compiler required

some modification to work for the expanded Adal subset.

2.4.1.2 DATA TYPES

The next feature added to the Adal subset was two new

data types, booleans and characters. These were added

since the AdaO subset was integer only. Unfortunately,

the addition of new data types required most of the code

written for the AdaO compiler to be modified. The

modifications to the code were made to allow the compiler

to do type checking and report typing errors.

14
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2.4.1.3 FUNCTIONS AND PROCEDURES

The next feature added to the Adal subset was

functions. The AdaO subset allowed only procedures.

Since a function is essentially a procedure that returns a

value functions were easy to include.

2.4.1.4 NEW OPERATORS

The AdaO subset left out some of the operators

defined in the Ada grammar. These operators are included

in the Adal subset. The new operators are the boolean

operators, and then, or else, and xor, and the integer

operators rem, mod, abs, and the exponentiation operator,

2.4.1.5 ADA STATEMENT FORMS

Most of the Ada statement and expression forms are

included. The statement forms included are the

assignment, if-then-elsif-else, iterative loops, while

loops, return, and null statements. The statement forms

missing from the compiler are mostly associated with

tasking. Since tasking was not implemented these could not

be included.

15
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2.4.1.6 COMMENTS

Comments were the final feature added to the Adal

grammar. The comments are a limited subset of the Ada

comment feature. The limitation was added to make

comments easier to handle for the compiler. Ada allows

comments to occur at any point in a program. The Adal

subset limits comments to be used as a program header, as

a regular statement, and to follow statements and variable

declarations. These places were thought to be the most

useful and also are the places within a program that a

user usually puts comments.

2.4.2 FEATURES DESIGNED

Designs were done to allow several of the more

interesting features of Ada to be imrlement at a later

time. These features are overloading of names and

operators, packages, user defined data types, and passing

parameters to subprograms.

2.4.2.1 OVERLOADING OF NAMES AND OPERATORS

The first design done was an algorithm to handle

overloading of names and operators. Several good

algorithms exist (Ref 2,14,16) to handle the problems of

operator and name identification. All that should be

needed is a "black box" implementation of one of them to

16
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do a prewalk of the abstract syntax tree and hang the

correct types onto the various structures.

The code involved in such a tool is long and very

involved, even though several of the references actually

give most of the code or pseudo-code for their algorithm.

The time needed to include this tool is beyond the scope

of this thesis effort.

Also overloading is not really essential to getting a

subset in which these tools could be rewritten. The only

change to the compiler that would be needed to include

this semantic analysis tool is the call to it when an

expression is encountered and the deletion of calls to the

symbol table routines when a name is finally found since

the type and symbol table information will already be

attached to the node. A design of the proposed semantic

analyzer is presented in chapter 5 and Appendix D.

2.4.2.2 PACKAGES

The second feature designed were data structures to

allow implementation packages. The design is presented in

chapter 5. The current implementation in no way precludes

or limits the inclusion of the design.

17
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2.4.2.3 DATA TYPES

The data structures needed to allow user defined data

types were designed next. These were only designed

because the code needed to do semantic verification was

not written. Even without overloading the code to do type

verification of expressions was difficult to implement

correctly. Since a semantic analyzer will eliminate the

need for this code, I felt writing extra code that would

later need to be eliminated was wasteful of time and

effort. The data structures needed to implement user

defined data types were designed and are presented in

chapter 5.

2.4.2.4 PASSING PARAMETERS TO SUBPROGRAMS

The final design done was of an algorithm to allow

parameters to be passed to subprograms. The algorithm

designed is presented in chapter 5 and Appendix C.

2.4.3 FEATURES NOT INCLUDED IN THE SUBSET

Since time was limited certain features had to be

excluded from the subset. Several papers (Ref 5,15,17

influenced my decisions regarding what features to

exclude. These papers pointed out problems with the Ada

grammar, problems with a feature or the fact that a

feature was extraneous to the language. One of these

18
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papers quoted Niklaus Wirth who said

The choice of what is to be omitted from a new
language is in practice much more critical than
the choice of what is to be included. The
decision to omit a feature requires not only
familiarity with this feature (and knowledge of
how to live without it) but the courage to face
the inevitable criticism of its absence in the
new language in spite of its presence in another
existing language (Ref 15).

Interestingly this quote was taken from the Green

Reference Manual which was the original Ada design but it

was omitted from later versions of the manual. Wirth was

referring to the fact that DOD was attempting to include

too many features into Ada to be popular. He was afraid

Ada would follow the same path as PL/1 which has

essentially died in spite of the backing given it by IBM

(Ref 17). Most of the features excluded from this subset

are features that the user can do without and in fact many

of them can be simulated using the features contained by

the language subset that was implemented.

2.4.3.1 TASKING

The first feature excluded from the subset was

tasking. Many problems with this feature are pointed out

in a technical note from the Defense Communications

Engineering Center (Ref 5). Since these problems

complicate the understanding of exactly how tasking is
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supposed to work and therefore how it must be implemented,

tasking was excluded.

Another factor which helped allow the exclusion of

tasking is that a tasking Ada subset compiler already

existed at AFIT (Ref 11) and it could be used or rewritten

for later integration into the syntax directed editor

environment. This rewrite would probably have taken most

of the time allotted to the development of this subset

compiler and thus the other features would not have been

implemented.

2.4.3.2 GENERIC PACKAGES

The next feature to be eliminated was generic

packages. The main reason for not implementing generic

packages was that packages themselves were not implemented

and generic packages cannot be implemented until such

time.

2.4.3.3 SEPARATE COMPILATION

The next feature eliminated was the separate

compilation of Ada sub-units. This feature only

complicates the design of the how the generated code is

stored and written out. The current design does not

preclude the insertion of code from a later compile but it

is not easily extended to allow such an insertion.
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One method that will work is to generate a jump

statement as the specification is compiled. When the

sub-unit body is compiled fix that statement to jump to

where the actual code is placed. This would allow the

code to be placed anywhere in the code array that space

permits.

One problem comes up when this type of separate

compilation is done. This is the problem of what the

symbol table looks like when the procedure should have

been encountered. The solution to this problem is not

trivial since the entire symbol table up to the point

where the specification is found must be saved for use

when the subunit is compiled. Due to the limitation of

time and the fact that this feature is not needed to

attain the goal of writing the tools into Ada it was not

included.

2.4.3.4 THE GOTO STATEMENT

The next feature eliminated was the goto statement.

This feature is not needed due to the numerous control

structures already available in Ada. Since Ada is such an

otherwise structured language the rationale for including

a goto statement is hard to figure out. Its inclusion, no

matter how structured, can only lead to misuse or very

complicated compiler restraints to ensure proper usage.

Since the arguments against the inclusion of the goto
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outweigh any possible gain from its inclusion, the goto

was not included in the subset.

2.4.3.5 OTHER FEATURES LEFT OUT

Several other features were not implemented. Most of

these were excluded for reasons of time or not being

needed for the chosen goal. Although these features are

of interest they tend to add little to the capabilities of

the subset. These include private types, access types,

named parameters, and input/output of enumeration types.

The design of the compiler in no way precludes the

later inclusion of any of these features and in fact many

*of the data structures used by the compiler were designed

with the excluded factors being considered. The goal

behind the design was to allow an easier extension than

the AdaO subset compiler did. Several fields of the data

structures are not even used but were included to handle

the analysis of these features.

2.5 PROBLEMS WITH THE ADA GRAMMAR

The development of this subset and the compiler for

it also brought out several problems with the Ada grammar

as presented in the Ada reference manual (Ref 7). These

problems were mostly in areas where the Ada syntax

specification allows the use of a non-terminal with a
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pre-fixed italicized modifier. The italicized modifier

creates a variety of the non-terminal, but syntactically

the modifier is ignored (Ref 7,17). For example

procedurename and packagename are varieties of name.

Usually these qualified non-terminals are used in

such restricted situations that the italicized modifier

can be retained without causing the grammar to become

ambiguous. Since the non-terminal can be restricted in

this way, the Adal subset incorporated these restrictions.

Incorporating these restrictions into the Adal subset

accomplished two things. First, it simplified the user's

job when writing a program with the syntax directed editor

This is because some choices that would otherwise be

available to the user are eliminated. This also

eliminates the need for the compiler to do some of the

semantic checks that would be necessary if the

restrictions were not incorporated. This is because the

restrictions eliminate choices that would be syntactically

correct but semantically incorrect.

For example, in the full Ada grammar procedure-name

is interpreted simply as name. The legal choices for name

are shown in figure 2-2. Of these choices only identifier

is semantically correct. Thus in the Adal grammar

procedurename was replaced with identifier (see Appendix

A). This greatly simplifies not only the user's job when

entering programs but also the compiler since the illegal
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choices need not be considered.

name ::= identifier
indexed component
selected_component
function-call
slice
attribute
operator_symbol

Figure 2-2 Ada Name Production

Most of the other problems with the grammar are

resolved by the user as he walks through the parse and

chooses the type of production or construct he wants to

use next. This means the compiler always knows what it is

working on and does not need to do any backtracking.

2.6 SIMPLIFICATIONS TO THE ADAI GRAMMAR

After the Adal grammar was developed, it was input to

the META program (Ref 9). The META program is used to

convert a grammar from its external, English form to an

internal representation that the syntax directed editor

and the other tools can use.

META does some checking of the input grammar. It

ensures that the grammar is complete in the sense that no

undefined non-terminals exist. It also checks to see if

the grammar could be simplified by either eliminating

unused productions or by combining two or more productions

into a single production.
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Unused productions are automatically eliminated.

Unfortunately they are not tagged as such in anyway. Only

a thorough analysis of the output from META would reveal

those productions which were eliminated. A production is

unused if its non-terminal is not used on the right-hand

side of any other production. There is one exception to

this rule. That is the first production in the grammar.

This production is considered to be the goal or start

symbol for the grammar and as such does not have to appear

on the right side of a production.

META also points out several potential

simplifications to the input grammar. These are pointed

out as a single unconditional term, a single alternative,

and an alternation alternative. Each of these potential

simplifications is the result of the subset nature of the

Adal grammar, and the causes are explained below.

2.6.1 A SINGLE UNCONDITIONAL TERM

The first potential simplification that META points

out is a single unconditional term. This is a

non-terminal that is replaced by a single terminal or

non-terminal. For example A ::= B;. META is suggesting

the grammar could be simplified by eliminating the

production and replacing all occurences of the

non-terminal A with B.

Several productions of this form appear in the Adal

25



ADA

grammar. These productions are due to the way the Adal

subset was developed. These productions are actually

concatenations or alternations in the full Ada grammar. A

decision was made to leave the subset as is since this

makes future expansion of the subset and the compiler

easier and it does not make the syntax directed editor any

more difficult to use.

An example of a production of this type in the Adal

grammar is the production for decimal number shown in

figure 2-3.

Adal

decimal-number integer

Full Ada

decimalnumber = integer [decimal_part]
[exponent) ,

Figure 2-3 Decimal number

2.6.2 A SINGLE ALTERNATIVE

The second potential simplification pointed out by

META is a single alternative. This is similar to the

single unconditional term except that the production

involved is an alternation rather than a concatenation.

For example B = < C > ;. By pointing this out META is

suggesting the grammar could be made simpler by making
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this production into a concatenation as B C ; or by

replacing all occurences of B with C and eliminating this

production.

Several productions of this form appear in the Adal

subset. These productions are again a result of the way

the Adal subset was developed. These productions are

actually multi-alternatives in the full Ada grammar.

Since simplifying the grammar does not make the user's job

any easier, the grammar was left unsimplified. This also

makes expansion of the subset grammar and the compiler

easier.

An example production of this type in the Adal

grammar is the production for a designator, shown in

.figure 2-4.

Adal

designator = < identifier >

Full Ada

designator = < identifier
opsymbol >

Figure 2-4 Designator Productions
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2.6.3 AN ALTERNATION ALTERNATIVE

The third potential simplification that META points

out is an alternation alternative. This results when a

choice of an alternation is an alternation in its own

right. An example is shown in figure 2-5a. META is

suggesting that these two productions can be combined and

the grammar simplified as shown in figure 2-5b. If the

non-terminal C only appears in other alternations it can

be eliminated from the grammar since after the

combinations are done it will not appear on the right hand

side of any production.

(a)
A2 B

IC;

C= D
fE;

(b)
A B

D
E;

C= D
E;

Figure 2-5 Simplification of an Alternation Alternative

Several productions of this form appear in the Adal

grammar. These do not result from the way the Adal subset

was developed but are actually caused by the Ada grammar
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itself and the way the productions must be formed for

input to META. In this case simplifying the grammar

probably would not make expansion of the subset grammar or

the compiler any more difficult, but in most cases the

simplification does not result in any true simplification

since no productions are eliminated. Doing the

simplifications can make the user's job somewhat more

difficult since he must choose from a larger list of

alternatives when a choice must be made.

The Adal grammar was left unsimplified to avoid

potentially overloading the user with too many choices at

any one time. Another factor that influenced this

decision is that in some cases the extra information

gained through the extra decision was very useful in the

semantic analysis and code generation for a program.

An example of this type of production in the Adal

grammar is the productions for primary and booleanvalue

and is shown in figure 2-6.

primary = < decimal-number
name
nested exp
char lit
boolean value
func call > ;

boolean value =< "true"
"false" >

Figure 2-6 Primary and Boolean Value Productions
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3. TOOLS IN THE SUPPORT ENVIRONMENT

The tools of the support environment work together to

accomplish a common goal. This goal is to simplify the

program development process for the programmer. To do

this efficiently the tools must communicate with each

other. Since the tools work independently, the

communication is done through a common data structure that

is retained throughout the development cycle. This data

structure is the abstract syntax tree representation of

the program that the syntax directed editor creates as the

program is entered.

This abstract representation of the program is used

or manipulated by each of the tools in the support

environment. The tools currently implemented are a syntax

directed editor, a compiler, an interpreter/debugger and a

program lister. Many other tools can be written to use

the abstract representation of the program. These tools

include code optimizers, cross reference routines,

semantic analyzers, and execution analyzers. The nature

of these tools is limited only by the imagination and

skill of a user or group of users.

3.1 SYNTAX DIRECTED EDITOR

The syntax directed editor is the first tool

encountered by a programmer. The syntax directed editor
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is used to enter a program into the environment. In this

sense a syntax directed editor is a text editor. it

differs from a standard text editor in its use and

ultimate goal. A standard text editor allows the user to

enter any text desired. The output of a standard text

editor is the text that was entered. A syntax directed

editor allows the user to enter text that is limited by

the syntax or grammar of the language the program is

written in. The output of the syntax directed editor is a

syntactically correct program that the other tools can

work with.

The syntax directed editor is not part of this thesis

effort. It is an integral part of the programming

environment and is used to create the abstract syntax tree

the other tools of the environment use. Its use is

necessary to be able to use the compiler and interpreter

being implemented for this thesis effort. The syntax

directed editor was originally developed by Scott E.

Ferguson (Ref 9) and was moved to the VAX 11/780 by John

Koslow.

3.1.1 USING THE SYNTAX DIRECTED EDITOR

To use the syntax directed editor the programmer must

tell it the name for the new program and what language the

program is to be written in. The syntax directed editor

then creates a template of the syntactically legal
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constructs for a program in that language. The user must

then "walk" around that template and choose the elements

to be included in the program. With each choice the

syntax directed editor replaces the object chosen with its

own template. This process of replacement continues until

the user is left with no more choices and the program is

fully written.

For example in the Adal language a program is a

compilation-unit. Since a compilation unit is an

alternation the user must choose whether to write a

function or a procedure. After the choice is made the

syntax directed editor displays the template that was

chosen. It is this template that the user sees when he

starts to enter a program. Suppose a procedurebody was

chosen, the user descends the tree into the procedure_body

and must satisfy the requirements of a

procedure_specification. This is simply an identifier

which is entered simply by typing in the name.

This "walk"/selection process continues until the

program has been fully entered. The programmer can then

exit the syntax directed editor or call the compiler,

interpreter, or program lister. The abstract syntax tree

representation of the program is stored by the syntax

directed editor before an exit is allowed. A more

complete explanation of the syntax directed editor can be

found in the thesis written by Scott Ferguson (Ref 9).
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The use of a syntax directed editor can have several

advantages and disadvantages. These are outlined below.

3.1.2 ADVANTAGES OF A SYNTAX DIRECTED EDITOR

The use of a syntax directed editor leads to several

advantages that can help later in the program development

cycle. The first and most important advantage is the

compiler does not have to do any syntactic analysis. This

can dramatically speed up the compilation process since

the compiler does not have to recreate the syntax tree

whenever the program is recompiled. It also allows the

compiler to concentrate on other aspects of the

compilation process. These aspects include semantic

checking, error recovery, and code optimization. The

compiler essentially becomes a semantic analyzer and a

code generator.

A second advantage of the syntax directed editor is

the fact that it is independent of the language the

programmer is using. This means it does not have to be

rewritten for each new language a programmer wants to use.

Only the language's syntax need be created and input to

the META preprocessor described earlier. This also means

a programmer does not have to remember how many different

editors work since the same editor will be used for each

project. This has one other advantage since only one
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editor is needed less secondary storage is needed to keep

editors online.

A third advantage of a syntax directed editor is in

the more efficient use of the computer. Several aspects

of this have already been pointed out. The first is the

compiler does not have to reanalyze the program each time

it is recompiled. Another is that the programmer does not

have to wait for a printout to be able to go in and fix an

error. This can save not only time but other resources

such as paper or wear and tear on a printer.

Another more efficient use of the computer is

achieved by a syntax directed editor since the CPU has

functions other than waiting for a user to make inputs to

perform. Since most CPU's can handle data much faster

than a user can enter it, the CPU tends to sit idle when

it could be doing other tasks. One of these tasks is the

creation of the various syntax nodes being put to use by

the programmer.

Another task the CPU could be doing is background

compilation. The compiler or some portion of it could be

running as a background task to the syntax directed

editor. A major problem must be overcome before this is

attempted. That problem is how _e editor and the

compiler communicate with each other to avoid the editor

changing the program that the compiler has already

generated code for. Also the editor must ensure it does
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not destroy a subtree the compiler is working while the

compiler is analyzing it. For these reasons and a lack of

time this feature was not implemented.

3.1.3 DISADVANTAGES OF A SYNTAX DIRECTED EDITOR

A syntax directed editor can have disadvantages. The

first of these is the user must have much more knowledge

of the grammar and syntactic structure of the language the

program is written in. This is due to the way the user

must interact with the syntax directed editor to indicate

what template to use next. This aspect will be further

discussed in the next chapter. This interaction may also

force a user to receive extra training and it may take

some users longer to learn how to properly use the new

tool.

The other main disadvantage to a syntax directed

editor is the syntax tree can take up to eight times more

secondary storage than its text based counter part. This

is due in large part to the amount of information

contained in the syntax tree that is not needed or

maintained by a text based system. (Ref 9). This is

becoming less and less of a problem as the cost of

hardware and secondary storage in particular decreases.
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3.2 COMPILER

The compiler in this environment becomes a simple

tree walking routine. It systematically walks around the

tree hanging code fragments for the node it is currently

on. The code fragments are generally hung only on the

leaf nodes of the tree.

A function is developed for each type of node that

the tree might contain. This makes the compiler somewhat

easier to modify or expand since only the functions for

the productions that changed must be modified. An

exception to this occurs when a change like adding data

types to the language is made. All functions must be

examined to see if type checking is needed. One way

around this is to write a separate semantic analyzer that

pre-walks the tree hanging type and symbol table

information onto the nodes. The current implementation of

the compiler is explained in more detail in the next

chapter.

3.2.1 INCREMENTAL COMPILATION

The compiler can also use this structure to save

information that can be used when a program is recompiled.

If the nodes are marked to indicate a change was made that

affected that node then the compiler can reuse any

information that is associated with unchanged nodes.
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Since ADA is such a structured, type oriented language

this feature was not implemented. This was to ensure the

semantic correctness of the program being compiled, since

changes in declarations and external packages can have

unknown affects. Such changes can even affect areas of a

program that have not been changed for a long time.

3.2.2 ERROR DETECTION AND RECOVERY

Using the abstract syntax representation of the

program and knowing that the program is syntactically

correct makes error detection and recovery done by the

compiler much easier. Since the compiler knows at all

times what construct it is working on, no error recovery

in the usual sense is needed. All the compiler needs to

do is ascend the tree to a node above the error and

continue as if the subtree with the error is ok. This

allows the compiler to do more extensive error checking

during the initial compile and also helps eliminate the

usual stream of false errors that are caused while the

compiler tries to resynchronize itself.

The only limitation on this error detection is the

maximum number of errors a user wants to allow before the

compiler quits. Since error flags are stored in the

syntax tree itself or in a similar structure, the iimiting

factor is how much storage is available for these errors.

These error flags have pointers into the syntax tree at
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the node with the error. The syntax directed editor can

then be invoked and will point to the first erroneous

node. The editor can also have the error message

available which relieves the programmer from having to

wait for a printout. This will save the programmer time

and allow programs to be written and debugged faster.

3.3 INTERPRETER

The interpreter or run time mechanism can use the

information stored in the syntax tree to allow the input

and output of enumeration types, to do range checking, and

any other run time checks that might be desired. In many

cases these checks can be done dynamically by the

interpreter without the need for extra code being

generated by the compiler. This can save time in the

compile process and also means that it will be easier to

override these run time checks since they only need be

turned off in the interpreter and no recompilation is

needed.

3.4 A DEBUGGING TOOL

An interactive debugging tool can be used to trace

the execution of a computer program. Debugging tools

exist but they are usually limited in their capabilities.

Using information contained in the syntax tree, the
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debugger can show the programmer exactly what is happening

during execution. This can help pinpoint an error and

show the programmer exactly where it is. This is

especially helpful if the error is in the middle of a

complex statement or if the error does not cause the

program to terminate. The current implementation combines

the interpreter and debugging tools into a single tool.

This is not the only way it could be done, but due to the

simple nature of the debugging tool it was the easiest way

to get them working.

3.5 PROGRAM LISTER

A program lister uses the information stored in the

syntax tree and the syntax description file to produce

nicely formatted listings. Using other information in the

syntax tree a lister could be written to generate cross

reference listing and other useful outputs. If done

properly these listings are more detailed than the usual

listings produced by a compiler.

An added feature of this lister is that it is usually

independent of the programming language in use. This is

also true of the syntax directed editor and means that

only the compiler and grammar need to be rewritten for the

syntax directed editor to work on another programming

language.
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Like the syntax directed editor, the lister was not

directly part of this thesis effort. It is part of the

effort done by Scott Ferguson and moved to the VAX 11/780

by John Koslow. It was used during this thesis effort to

produce listings of the programs used to test the

compiler.

3.6 CODE LISTER

The code lister is a simple tool to extract the code

generated by the compiler and transform it into a readable

format. The code lister is newly implemented as part of

this thesis effort. It is dependent only on the set of

"executable" instructions being used by the compiler and

interpreter. It is the only tool of the support

environment that does not use the abstract syntax

representation of the program.
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THE ADAI COMPILER

4.0 THE ADAI COMPILER

The Adal compiler can be split into three interacting

but separate parts. These are the semantic analyzer, the

symbol table routines, and the code generator. The

semantic analyzer is used to hang the types onto

expressions and variables. The symbol table routines are

used to insert and look up names in the symbol table. The

code generator is used to produce code for the program.

These three parts work together to compile an Adal

program. The code generator is the controlling program

and it calls the other two as needed. The semantic

analyzer is used to preview an Adal expression and

determine its type. This preview makes the generation of

code much easier. The symbol table routines are called by

both the code generator and the semantic analyzer as

necessary.

This chapter will discuss the implementation of the

code generator and the symbol table routines. A proposed

design for the semantic analyzer will be presented in the

next chapter.

Since no means currently exists for specifying

semantic actions in the META syntax description, the code

generator must be coded separately. Fortunately the code

generator merely needs to walk the tree building the

symbol table and generating code for the pseudo-machine.
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4.1 PROGRAM TREE WALK

The need for a parsing step is eliminated since the

structure and syntactic correctness of the program tree is

assured. Walking the tree provides access to the

syntactic elements of the program. Since the code to walk

the tree models the syntactic structure of the language,

each non-terminal in the grammar maps into a function to

evaluate and validate its subtree. The function is passed

a single argument which is the root node of the subtree.

Thus to start the compilation process the root node of the

tree is passed to the function goal.

Since a non-terminal can be either a concatenation or

an alternation, two basic function structures are used.

4.1.1 CONCATENATION NODES

For a concatenation non-terminal, the function

consists of a series statements to analyze and validate

each child node in turn. Non-terminals are processed by

calling subroutines to analyze and validate their

subtrees. Terminal strings and sets are processed for

their value. Terminal strings present in the grammar are

not present in the abstract syntax tree so they present no

real problem. For example the syntax for a function body

is given in figure 4-1. Sample code to accept this syntax

is shown in figure 4-2.
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funcbody =
funcspec "is"

decl 3
C program_component I

"begin"
seqof stmts

"end" [ identifier 1 ";"

Figure 4-1 Function Body Syntax

procedure FUNCBODY(node : tree-node);

var child : tree-node;

begin
child := first child(node);
FUNC SPEC(child);
child := right_sibling(child);
while (node_type(child) = "decl")

begin
DECL(child);
child := right_siblingichild);

end;
while (node_type(child) = "programcomponent)

begin
PROG COMP(child);
child := right_sibling(child);

end;
SEQ OF STMTS(child);
child := rightsibling(child);
if (node type(child) = "identifier")

old ident(child);
end;

Figure 4-2 Function Body Accepting Procedure

Required non-terminals like func_spec and

seqofstmts are processed by their own functions. The

decl and prog_comp repeaters are processed in while loops

for as many such nodes as exist in the func_body. The

optional identifier at the end of the funcbody is
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processed by an if statement. Unestablished optionals and

repeaters are ignored since the program is correct without

them.

4.1.2 ALTERNATION NODES

An alternation non-terminal is processed by a case or

switch construct. The case is based on the type of the

non-terminal's only child. One case is used for each

possible alternative. If no child exists due to an

unestablished alternative, the incomplete program fragment

is reported as an error.

4.1.3 SIMPLE NON-TERMINALS

A third type of non-terminal exists in the subset.

This is a non-terminal that is replaced by a single

non-terminal. These non-terminals are processed by a

simple call to the function that processes the second

non-terminal. For example

stmt =

simp_stmt

This is processed by the function

function stmt(node : tree-node) return integer;

begin
stmt := simpstmt(son(node));

end;
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This has several causes. In the above example the

subset eliminated an optional label from the production.

The production was left as is to allow easier expansion of

the subset to the full Ada grammar. The full Ada stmt is

stmt =

( label ) simpstmt

Another cause is shown in the definition of a procdecl.

proc decl
procspecsemi

This is actually an alternation in the full Ada grammar.

Once again no reduction was made to allow for easier

expansion of the compiler. The full production is

proc decl =

< procspecsemi
generic_proc decl
generic_proc instant >

4.1.4 COMPILATION IN PIECES

Since the entire tree is available during the

complete compilation process, it need not be accessed in a

strict linear fashion just described. It could be

compiled in pieces with each completed subtree being pass

by the editor to the appropriate subroutine for

processing. This would allow the compiler to run

background to the editor, which would improve the

effi .iency of the entire system.
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4.2 ERROR HANDLING

The syntax directed editor ensures the syntactic

correctness of the program It is still possible for the

program to contain semantic errors. It is the compiler's

responsibility to detect and report these errors. Two

examples of semantic errors are an undeclared identifier

and an identifier of the wrong type in an expression.

4.2.1 ERROR RECOVERY

Error recovery is usually a difficult process for a

compiler, since it is trying to check the syntax as well

as the semantics of a program. When it encounters what it

thinks is an error it must check if using a different

syntax would eliminate the error. Also the recovery

process itself may cause new errors to be detected since

the compiler must guess where to restart the compiling

process.

Due to the assured syntactic correctness of the

program, the error recovery function is all but

eliminated. Semantic errors are easy to recover from,

since they tend to only affect a relatively small part of

the entire program. The recovery process involves

patching the code that is generated, reporting the error

to the user, and marking the erroneous node. Marking the
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node allows the syntax directed editor to detect it as

erroneous and move the focus to that node to allow the

programmer to make the necessary correction.

The fact that an error was encountered is also passed

back up the tree through the returns from subroutine calls

until a subroutine is found that can continue in spite of

the error. Thus error recovery is built right into the

functions themselves and poses no particular problems

except how to determine when an error no longer has an

affect.

For example if the symbol table is searched for an

identifier and it is not found, the error undeclared

identifier is generated. This error only affects the

expression in which the identifier is being used. The

compiler reports the error and then generates code to load

a 0 value instead of the real value and processing is

allowed to continue. By generating this code, execution

of the program could actually take place although the

results would probably be invalid. This example might

result in the expression being of the wrong type and

further errors reported.

4.3 SYMBOL TABLE

The symbol table is used by the compiler to store

information about the names in the program. As

implemented the names are left in the abstract syntax tree
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and a pointer to the identifier node is stored in the

symbol table. The characters of the name are distributed

as children of the identifier node. Comparison of two

identifiers is done by pattern matching the two identifier

subtrees. This leaves the storage for names in the syntax

tree and conserves memory since an identifier is stored in

only one place.

4.3.1 SYMBOL TABLE STRUCTURE

The symbol table structure is one area that required

major revisions to do the desired expansions. The symbol

table data structure was revised to hold much more

information about a symbol. This was required since new

types were introduced and functions were allowed. Also

fields were added to allow parameters for functions and

procedures and to allow overloading to be implemented at a

later date.

The symbol table is implemented as an array. This is

a simple method that allowed for easy implementation of

packages. An array of integers is very easy to read and

write to disk to allow the visible part of a package to be

saved when it is compiled and then read back in when it is

used. This saving of the symbol table is necessary to

avoid the necessity of recompiling the package each time

it is used. This reading and writing of the symbol table

is the main extension to the symbol table that was
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implemented.

The new data structure is shown in Appendix D. A

discussion detailing the use of each field will also be

found there.

4.3.2 SYMBOL TABLE ROUTINES

The symbol table routines did not require any major

modifications since overloading was not implemented.

Overloading would require the lookup routine to find all

visible occurrences of an identifier. These would be

linked together and passed back to the compiler. Since

overloading is not allowed only the first occurrence of an

identifier is found and the symbol table index is

returned.

4.4 CODE GENERATION

The code generated by the compiler is for a

pseudo-machine similar to the PL/O interpreter written by

Niklaus Wirth (Ref 18). Code is generated as the compiler

walks the tree. Each instruction generated contains a

pointer to the abstract syntax tree node which is thought

to be responsible for the instruction. This pointer is

used by the interpreter to dynamically show the programmer

what part of the program is being executed.
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4.5 THE INTERPRETER

The interpreter can be called by the syntax directed

editor or executed independently. The interpreter calls

the compiler to 7ompile the program and if no errors are

detected the program is executed. Using the information

in the code element, the interpreter is able to highlight

the program tree display to show where in the program

execution is currently occurring. The highlighted portion

of the tree moves around as instructions are executed to

trace program execution. The interpreter also displays

the top few elements of the run time stack and the next

instruction to be executed.

4.5.1 MODIFICATIONS TO THE INTERPRETER

The interpreter required several revisions to get it

to run on the Vax 11/780. These revisions were due mainly

to differences in the way the micro-computer operating

system required space to be allocated and the way the Vax

required it.

Code for some of the pseudo-instructions of the run

time machine had to be modified to accommodate differences

in the way the two computers and their C compilers handled

expressions. For example the _SUB instruction was coded

push(-pop() + popo)

This seems to be correct but the result of execution as
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shown by running a program with a subtraction in it was

incorrect on the Vax. The code was changed to

= -pop();
j = pop();
push(i+j);

This code seems to do the exact same function but the

results of the two are different. The first set of code

actually gives the negative of the correct answer. The

second set of code gives the correct answer. The reason

is unknown but probably lies in a different implementation

of the C compilers used on the two machines. The code to

evaluate the relational instructions; LES, LEQ, GRT, GEQ;

were also changed in this manner.

They were changed in this manner rather than directly

manipulating the stack in order to ensure stack integrity

by using the stack manipulation functions, push and pop.

Another method that could have been used was to change the

operator being used in the interpreter. Thus SUB

instruction would have become

(push(pop() - pop();

This would not be portable to other machines nor would it

be clear as to why the apparent order of evaluation was

changed. To avoid this ambiguity, this method was not

used.

The other changes that were made to the interpreter

involved the addition of instructions to handle the new

statement forms added to the subset.
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4.6 CURRENT IMPLEMENTATION AND EXTENSIONS

The compiler as implemented by Scott Ferguson was for

a limited subset of Ada. Various extensions and

modifications were made to this subset. The extensions

include new predefined operators and functions. The

modifications to the current compiler were done to allow

predefined data types other -'.an integer to be used.

4.6.1 BOOLEAN OPERATORS

The new predefined boolean operators added to the

compiler are the ANDTHEN, ORELSE, and XOR. The ANDTHEN

and ORELSE presented several problems in their

implementation. Though the implementation is similar to

the other Boolean operators in form, they had to generate

code much differently since their intent is as

short-circuit operators.

The ANDTHEN operator must evaluate its left operand

and if it has a value of true the right operand is

evaluated. If the value is false then the right operand

is not evaluated.

Similarly the OR ELSE operator must evaluate its left

operand and if the value is false it must evaluate the

right operand. If the value is true then the right

operand is not evaluated.
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locations of the instructions be saved until the entire

expression is evaluated so that the code can be fixed to

jump to the correct location.

This was done by creating two new instructions for

the interpreter, _7NDTHEN and _ORELSE. The code was

also generated one node higher in the tree than for the

other Boolean operators. This allowed the locations for

the branching instructions to be linked together and then

fixed after the expression was fully analyzed. See

Appendix E for the code.

4.6.2 INTEGER OPERATORS

The other new predefined operators added were REM and

MOD. These were rather easy to include in the compiler

since they only involved adding new case values to

existing functions. They did cause some problems for

inclusion in the interpreter since C does not have a REM

function. This meant code for the REM function had to be

written. After some experimentation using the examples in

the Ada reference manual (Ref 7), a formula was devised to

calculate the correct value. See Appendix E for the code.

4.6.3 SUBPROGRAMS

The AdaO subset included only procedures. The Adal

subset was expanded to include functions as well. This
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expansion required the code used to analyze and compile

procedures to be changed because the AdaO subset did not

have a return statement. Since Ada requires all functions

are required to have at least one return statement, the

return statement had to be added to the Adal grammar.

Since the code required to handle functions and procedures

is very similar they are discussed together.

Functions were rather easy to include in the extended

compiler because a function is essentially a procedure

which returns a value. Procedures were already included,

so the extension amounted to modifying existing code to

fit the function syntax. It is the returning of a value

that requires the use of a return statement.

The code to compile a procedure also had to be

changed to accommodate the return statement. Two changes

were made. The first was to indicate a procedure was

being compiled. The other was to fix the code generated

by the return statements. Since procedures do not require

a return statement no code was written to verify the

existence of a return statement only to fix the code

generated if any exist.

The return statement caused most of the problems,

mainly because it could appear anywhere in the body of a

function or procedure. These problems included

determining the type of subprogram currently -being

compiled, where to put the value being returned, how to
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verify its type, and how to link the return statements to

the end of the subprogram so that the stack clean up steps

could be done properly.

4.6.3.1 SUBPROGRAM RETURN

When the return statement is compiled it is necessary

to know if the return is from a function or a procedure

since a function return must include an expression while

the procedure return return cannot.

Since the return statement can only appear within the

statement body and the type of the statement body cannot

change until the body is complete, an external pointer can

be used. An external symbol table pointer is set to point

to the name of the current function or procedure being

compiled. The pointer is set just before the body is

compiled. When a return statement is encountered the

subprogram type of this name is checked to see if a

function or procedure is being compiled. Appropriate

actions are taken in each case. The code to handle a

return statement is shown in Appendix E.

4.6.3.2 VALUE RETURN FROM A FUNCTION

The problem of how to save a value being returned

from a function was also rather easy to solve. The

calling routine expects the value to be on top of the
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stack when the return is made therefore code was generated

to ensure the value being returned appeared where it was

expected. The solution involved a two step process and is

limited to handling simple data types. The solution can

be easily expanded to handle more complex data types but

since they were not in the subset the extensions were not

made.

The first step was to create a stack entry for the

return value before the function was actually called.

This ensured the value would appear on top of the stack

upon return and it allows the function to do its normal

stack clean up with out worrying about what to do with the

returned value. This is done by loading a 0 value onto

the stack. To expand this to data structures a 0 could be

loaded for each element of the structure.

The second step was to store the value into this

location. This location is a -4 offset from the

function's stack base. Thus a store instruction with

offset -4 is generated just before the stack'clean up and

subprogram return instructions are generated. To expand

this to handle data structures a similar store instruction

could be issued for each element of the structure.

Several problems with this method exist. These are a

function return statement that does not return a value,

return to the operating system, and return type

validation. These problems were handled rather easily.
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A function return statement that does not return a

value is in error and must be reported as such. This is

handled quite easily but the user may want to allow

execution to occur in spite of the errors. Partial

execution is possible and if the statement which caused

the errors is not executed the program may actually give

correct results. To allow partial execution to occur an

instruction is generated to put a value onto the stack in

place of the value that is expected. The value used is 0

but to cause termination the undefined value could be

used. Another solution would be to generate an abort

statement with an appropriate error message.

To allow return to the "operating system" the

interpreter was modified to push an extra 0 onto the stack

to account for the value being returned by a function.

This can occur when a function is being written as a

separate entity to be used by several programs. Though no

method of separate compilation is implemented, a function

could be written and tested independently with this

change.

The third problem is type validation of the value

being returned. The type must be checked when the

expression is compiled and its type is known. The

solution is discussed in the next section.
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4.6.3.3 RETURN TYPE VALIDATION

The type validation problem is also rather easy to

solve. It is actually a two part problem. The first part

is handled by the compiler to check that the expression is

of the correct type. The second must be handled by the

interpreter to verify the value being returned is in the

correct range for a subtype.

The compiler can do its checking using the symbol

table pointer discussed earlier. This pointer gives

access not only to the functions name but also t the type

it must return. Using the pointer the expected and actual

types are compared. If they are the same the type is

returned. If not an error message is generated and error

is returned. This problem will be handled by the semantic

analyzer when it is implemented.

The problem of range checking is handled by the

interpreter and was not implemented since subranges were

not in the subset. The solution is rather easy and is

given now. The compiler must generate code to load the

upper and lower bounds of the range onto the stack and an

instruction to cause the value to be checked. The

interpreter must then execute these instructions and leave

the value on the stack if it is in the range or generate a

run time error if it is not in the range.
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4.6.3.4 LINKING THE RETURN TO THE END OF THE SUBPROGRAM

Linking the return statements to the end of the

subprogram was the most difficult problem to solve. Two

potential solutions were investigated.

The first potential solution is to generate the code

to do the stack clean up, subprogram return and value

store each time a return statement is compiled. This is

easy to do but requires the symbol table to be modified to

hold the number of names declared in the subprogram. It

also requires 2 or 3 instructions to be generated for each

return statement.

The other method is to generate a jump instruction to

transfer control to the end of the subprogram where stack

clean up, subprogram return, and value store will be done.

This requires the compiler to do some extra work since the

jump instructions must be linked together to allow them to

be fixed when the subprogram end is found. This requires

the compiler to keep a list of the jump instructions. The

jump instructions themselves can be used for this purpose

since the operand fields are not used until the

instruction is fixed. Only a single new variable is

needed to keep track of the return list. This variable is

needed anyways to indicate whether a subprogram has a

return statement or not.

Since the second method was rather easy to implement

and required less memory for a subprogram with more than
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one return statement it was chosen. See Appendix E for

the code written to implement these features.

4.6.4 DATA TYPES

The modifications to the AdaO compiler to allow new

types to be added were quite extensive. The AdaO compiler

uses functions that return one of four possible values,

SUCCESS, ERROR, a symbol table index, and a value. Only

functions that returned SUCCESS had to be changed, to

return a type value. Code also had to be added to verify

the returned type was alright in the context it appeared.

For example in the if-statement the expression must

be a boolean expression. The syntax for expression allows

any type expression to be entered so the expression

analyzer had to be changed to return a type and the

ifstatement analyzer had to test that type. A full list

of the modified functions is shown in Appendix xx.

A simple semantic analyzer was embedded in the

compiler. It allowed type checking but could not handle

the problems of overloading. This approach was used since

a separate semantic analyzer will be almost as large as

the compiler itself and when it is written it should take

overloading into account and solve the problems

overloading causes. Since overloading was not allowed in

the Adal subset, this problem was not :- dressed except to

design a mechanism to handle overload resolution. That
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design is presented in the next chapter.

4.6.5 OTHER MODIFICATIONS

Other modifications had to be made to the compiler.

These involved differences in how the micro-computer which

Ferguson used and the VAX 11/780 do things. These changes

were minor but difficult to pin down since they did not

appear until the compiler was actually being tested. The

main area of concern was how memory is dynamically

allocated to a program. The way Ferguson had allocated

memory to the AdaO compiler should have worked on both

systems but it did not. The compiler did not catch the

problem since it was not a syntax or semantic error but a

difference in how the functions involved were implemented.

This is a prime example of how a standardized language and

implementation, like Ada, would have saved time and

effort.

The second change was in how thr !arious tools of the

environment called each other. This again was not caught

until the system was tested as a whole. The problem was

in the function, EXECL, which used its arguments

differently on the two systems. Again the change was

minor but still a change that should not have been

necessary. To complicate matters neither system

documented their usage well and the changes had to be made

through experimentation.
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The third area of change was due to changes in the

Ada syntax as presented in the Ada standard (Ref 6). The

Ada grammar was changed in several subtle areas between

the preliminary Ada reference grammar (Ref 7) which Scott

Ferguson used, and the Ada standard which I had to follow.

Most of the changes were in areas that did not affect this

thesis effort, but one change did.

This change is the introduction of a new level of

precedence for operators, the highest precedence

operators. The newly defined highest precedence operators

are an exponentiation operator, the NOT operator, and an

absolute value operator, ABS. In the preliminary

reference grammar the NOT operator was defined as a unary

operator, while the other two were not defined at all.

The NOT and ABS operators are unary operators but they are

given a higher precedence than the other unary operators

defined in the Ada grammar. This change in precedence

required several changes to the grammar and changes to the

compiler to handle the new syntax.
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5 DESIGN OF THE NEW TOOLS

5.0 DESIGN OF THE NEW TOOLS

Several new tools were designed as a result of this

thesis effort. The original intent was to also do the

implementation of these tools but time limitations made this

impossible.

The new tools designed are a semantic analyzer, a

method for passing parameters to subprograms, and data

structures to allow user defined data types.

5.1 SEMANTIC ANALYZER

A semantic analyzer is needed to resolve overloading of

names in Ada. Languages like Pascal do not need a separate

semantic analyzer because names cannot be overloaded as they

can in Ada. A simple symbol table search is all a Pascal

compiler needs to do since only one instance of a name is

visible at anytime. Either a name is in the symbol table or

it is not and the compiler does its analysis accordingly.

An Ada compiler must also consider the context in which a

name appears because all instances of a name are potentially

visible.

Since this analysis can be quite complicated a separate

analyzer is proposed and designed.
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5.1.1 THE BASIC SEMANTIC ANALYSIS ALGORITHM

The semantic analyzer is called by the compiler when

the compiler needs to know the type of an expression. The

compiler passes the root node of the expression to the

semantic analyzer. The semantic analyzer uses this node as

the root of the tree it must analyze. The semantic analyzer

walks this tree much like the compiler would and determines

the type of each component of the tree.

The analysis takes place in three phases or passes.

This is all the analyzer requires to analyze and completely

type an expression (Ref 2). This analysis will result in

either a valid expression with each node of the tree being

typed or an invalid expression. An invalid expression is

one that either does not have a valid interpretation or has

more than one valid interpretation.

5.1.1.1 PASS ONE

The first pass is a top down pass that hangs the

desired types onto each node of the tree. This is done by

analyzing expression beginning with the operator that will

be executed last. This operator is the rightmost operator

with the lowest precedence in the expression. Since the

tree being analyzed is an operator precedence tree the

rightmost operator at this level in the tree is chosen. The

operator is analyzed and right and left operand lists are
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developed for it. If either of these lists is empty an

error is reported and analysis can stop. If both lists are

non-empty they are passed to recursive calls to pass one to

analyze the operands as expressions themselves. This

process continues until a leaf node is reached at which time

pass two is called.

5.1.1.2 PASS TWO

The second pass is a bottom up pass that delivers the

available types for an expression based on the types

available in the tree below. These available types are

compared with the list of desired types for the node and a

new list is created. This new list consists of the types

that are on both the available list and the desired list.

If this list is empty an error is reported and analysis con

stop. If the list is non-empty, it is hung on the node

replacing the desired list and it is passed back up the tree

to the expression above. This process continues until the

root node of the expression is reached at which time two

possible results can occur, a single valid type or the

expression has multiple valid types.

If the expression has a single valid type pass three is

run to resolve any ambiguities that still appear in the

tree. If the expression has more than one valid

interpretation an error is reported and analysis is stopped.
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This is the only point at which multiple valid

interpretations cause an error to be reported.

5.1.1.3 PASS THREE

The third pass is another top down pass that must

resolve any remaining ambiguities. Pass two could be

written to indicate that no ambiguities appear below a given

node thus making analysis by pass three unnecessary. If at

any time during this pass an ambiguity cannot be resolved

the expression is invalid and an error must be reported. No

further analysis will resolve the ambiguity since previous

analysis has shown the interpretations to be valid and no

new restrictions have been introduced.

5.1.2 DATA STRUCTURES USED

The semantic analyzer requires two different data

structures to do its analysis. Both structures are linked

lists but their contents are somewhat different.

5.1.2.1 OPERAND LIST

The first structure is the operand list. This list

contains the currently valid type or types for the operand

or name in question. The structure consists of a type and a

pointer to the next element of the list.
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5.1.2.2 OPERATOR LIST

The other structure is the operator list. This list

contains the currently valid interpretations of the

operator. This structure consists of five elements. The

valid type for the left operand, the corresponding valid

type for the right operand, the type this operator will

return, the symbol table index of the operator, and a

pointer to the next element in the list.

The symbol table pointer for a predefined operator is

set to "-1". This is because the operators are not in the

symbol table but will be recognized by the code generator

from the types of the operands. This will also save time

during execution since no function call is made to

evaluate the operator.

5.2 PARAMETER PASSING

Parameter passing to functions and procedures in Ada

can be extremely complicated. The complications result

from the many diverse methods of passing parameters that

are allowed in Ada. Ada allows parameters to be in, out,

or in out parameters. They can be passed positionally, by

name, by default value, or any combination of the three.

Due to the complex nature, a full parameter passing

mechanism was not designed. Only positional parameter

passing is handled but the mechanism does not preclude
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enhancement to handle the other methods. Positional

parameter passing is complicated because of the various

modes a parameter is allowed to have.

5.2.1 PARAMETER MODES

Parameters in Ada can be given one of three modes.

These modes are IN, OUT, and IN OUT. If no mode is given

in the declaration of a parameter it defaults to the IN

mode. A short explanation of each of these modes is given

below.

5.2.1.1 IN PARAMETERS

In parameters are treated as local constants inside

the subprogram. They have a value associated with them

when the subprogram is called and they cannot be updated

by the subprogram.

5.2.1.2 OUT PARAMETERS

Out parameters are treated as local variables inside

the subprogram. They do not have a value associated with

them when the subprogram is called but they are allowed to

be assigned a value. In fact the subprogram is considered

to be in error if an assignment is not made. The value

associated with an out parameter when the subprogram

returns is copied back into the location of the actual
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parameter that was used in the call. For this reason an

out parameter must be a variable name and not an

expression.

5.2.1.3 IN OUT PARAMETERS

In out parameters are also treated as local variables

inside the subprogram. They do have an initial value

associated with them when the subprogram is called and

they are allowed to have a new value assigned to them

during the execution of the subprogram. In out parameters

do not have to be updated by the subprogram. The value of

an in out parameter is also copied back when the

subprogram returns. In out parameters must also be

variables and not expressions.

5.2.2 PARAMETERS TO FUNCTIONS

Since functions are not allowed to produce any side

effects other than returning a value, out and in out

parameters are not allowed. This makes functions

relatively easy to handle since each parameter must have

an initial value and that value is then pushed onto the

stack. The compiler must make certain that the formal

parameters are not updated or used as out or in out

parameters to another procedure. This is relatively easy

since the parameters will be marked as constants and the
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compiler ensures that a constant is not updated. Also

since the values associated with the parameters are not

needed after the function returns the stack can be cleaned

up by the function return and the returned value(s) left

on top of the stack.

5.2.3 PARAMETERS TO PROCEDURES

It is procedures that cause the majority of problems

since they are allowed to have out and in out parameters.

In parameters are treated the same as functions. Their

value is pushed onto the stack and then the procedure

references it from there. This method was chosen for in

parameters since the value is known when the function is

called and the actual parameter can be an expression which

the run time machine will evaluate and leave the value for

it on top of the stack. Since that is where we want the

value to be, no special treatment is needed. Also if

default values are allowed they can be pushed onto the

stack if the actual parameter is not found for the call.

Out parameters cause many problems of their own.

Since they must receive a value during execution of the

subprogram the run time mechanism must be changed to

verify all out parameters were updated. Perhaps the

easiest way to do this is to reserve one bit pattern as an

undefined value. This value could then be detected by the

run time mechanism if it was ever used as a valid value.
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The value that is the easiest to use is the smallest

negative number or the largest positive number. This

reduces the values a program can use but the restriction

is easy to live with since numbers of that magnitude

seldom get used in a program.

5.2.4 DATA STRUCTURES AS PARAMETERS

Structures like arrays and records can cause

problems. They can be handled in two ways. The first is

to simply push all the values onto the stack and reference

them from there. The other idea is to push a pointer at

the first element of the array or record and reference

them indirectly. Both methods have their advantages and

disadvantages.

Pushing the structure onto the stack has the

advantage that only that procedure or function can address

that copy of the variable. This is especially useful if

the structure is an in parameter and it ccn be addressed

globally as well. The standard says that any program that

does that is in error since a "constant" (the formal

parameter) was updated during execution of the subprogram.

The handling of this problem seems to be beyond the scope

of this thesis effort and was not addressed.

The other problem that can arise is if the actual

parameter is visible to more than one concurrently

executing task. In this case the indirect method could
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produce varying results depending on how quickly each task

executed. In this case the program is also in error.

Since tasks were not included in the Adal subset, this

problem was not addressed.

Pushing all values onto the stack has its drawbacks

as well since it "wastes" stack space. With a limited

stack this could present a problem for a large program.

Access through indirection does not have this problem but

it does have the problems discussed in the previously.

Since the former problem is much more difficult to solve

than running out of stack space, the method of pushing all

values onto the stack was chosen. If programs are written

that exhaust the stack space, the user must simply

recompile the interpreter and increase the stack space or

rewrite the stack handler to allow linked stacks.

5.2.5 PROPOSED SOLUTIONS

The Ada standard (Ref 6) does not specify how out and

in out parameters are to be handled. They can either be

passed by value (undefined) and then update the actual

parameter when the procedure is complete or they can be

passed by reference and be updated as the procedure

executes. To avoid some of the other problems, pass by

value and update on return was chosen.

Structures and simple names present no real problems

and are handled easily. This is because their addresses
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are known at compile time and the code to do the load and

update can be generated correctly. The parameters that

cause problems are the indexed names like a single array

element. Since the index is allowed to be an expression

whose value is not known until execution, the location to

update is not known until run time. This is no problem

for the call but only for the return.

5.2.5.1 INDEX RE-EVALUATION

The first method that comes to mind is to evaluate

the expression and push the value onto the stack then load

the value using the index to get the value to be passed.

For the return the same expression can be re-evaluated and

the index used for the store instruction. That looks good

but what if value of the expression for the index has

changed. This can happen if one of the variables in the

expression is used as an out or in out parameter to the

procedure or if it is used globally by the procedure.

This method was not used.

5.2.5.2 INDEX LEFT ON STACK

The second method that came to mind was to leave the

value of the index on the stack after the load and then

use it when the procedure exits and the new value is

saved. A minor problem with this is that all parameters
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below this one are now offset one too many and the

references to them will be incorrect. A solution seemed

to be to change the offset value in the symbol table but

this prevents recursion since the second call has no way

of saving the offset values from the first call. This

method was not used.

5.2.5.3 MODIFY SYMBOL TABLE

A third method that was investigated was to add the

new elements to the symbol table and then have the run

time mechanism reference them through the symbol table.

This would work but would require a major rewrite of the

run time machine and the symbol table handler. For these

reasons this method was not used.

5.2.5.4 USE A SECOND STACK

The fourth method that was investigated involved the

use of a secondary stack by the run time machine. The

second stack is used to save the index values for out

parameters. It is only used when a procedure is invoked

that has an out or in out parameter(s) and the actual

parameter used in the call is an indexedcomponint. This

required a minor rewrite of the run time machine but since

several new instructions were being added, the rewrite was

inevitable. The rewrite does not change any of the
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instructions currently implemented but was limited to

adding code to interpret the new instructions. Since no

major problems were found with this solution, it was

designed. The basic algorithm is given in Appendix C.

This is a workable design and it does not preclude an

extension to allow named parameter passing or default

parameter values to be used. This design also allows

recursion and seems to solve many of the Ada related

problems. One change seems necessary to this algorithm.

That is to handle overloading of names. This problem is

solved by using the semantic analyzer to resolve the

ambiguities and only use this algorithm as a code

generator after all ambiguities have been resolved. The

steps that verify correct types and number of parameters

can then be deleted since the procedure will be

semantically correct before this algorithm is used.

5.3 DATA STRUCTURES

The data structures to implement user defined data

types and allow for package elaboration are shown in

figure 5-1 and 5-2. A short explanation of how these

structures were developed and how they are used is given

below.
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5.3.1 USER DATA TYPES

The userdatatype structure, shown in figure 5-1, is

used to store information about a user defined data type.

Eventually all data types will be "user defined", since

the package standard will be used to pre-load the symbol

table with the predefined types and functions. In the

current implementation the predefined types and functions

are handled as special cases by the compiler. They are

recognized and handled properly.

struct userdata_types
[

int name, /* pointer to name in tree */
base type, /* pointer to base type */
first, /* pointers to first and */
last, /* last enumeration lits */

/* for enumeration types, */
/* fields for records,
/* indices for arrays */

index_type, /* type of index elements */
num; /* number of values for

/* enumeration types, */
/* size of an array or
/* record

unsigned flags; /* binary flags explained */
/* below

#define IS ARRAY 0x01 /* type is an array */
#define IS-RECORD 0x02 /* type is a record *1
#define IS ENUM 0x04 /* enumeration type */
#define INDEXIrT 0x08 /* indices are integer */

Figure 5-1 User Data Type
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5.3.1.1 NAME FIELD

The name field is a pointer back to the node that

created the new type. The children of this node are the

name of the type. This is done to allow to data type

names to be compared in a manner similar to the one used

to compare to identifiers.

5.3.1.2 BASE TYPE FIELD

The base_type field is used for arrays and subtypes

to indicate the type of the elements of the array or the

base type of the subtype. Since this is a pointer into

the abstract syntax tree, it is possible to define an

array of arrays. This construct is left as illegal in the

Adal subset but since this is how Ada defines multiply

subscripted arrays, extending this data structure should

be easy.

5.3.1.3 FIRST AND LAST FIELDS

First and last have two uses. For enumeration types

they point into the abstract syntax tree to indicate the

first and last elements of an enumeration type. For

arrays they point into the abstract syntax tree to

indicate the first and last indices of an array. This is

unless the indices are integers then they are simply the

first and last indices.

77



DESIGN OF THE NEW TOOLS

5.3.1.4 INDEX TYPE FIELD

Index_type is used for arrays to indicate the type of

indices the array uses. This is also a pointer into the

abstract syntax tree to allow two types to be compared.

If the indices are integers this field is set to -1.

5.3.1.5 NUM FIELD

Num also has two uses. For enumeration data types

and subtypes it is the number of elements in the type.

For structures it is the size in words of the structure.

5.3.1.6 FLAGS FIELD

The flags field is used to indicate type the new type

is. The isarray flag is set if it is an array. The

is-record is set for records. The is enum bit is set for

enumeration types. The int index is set if the indices

for an array is a range of integers.

5.3.2 WITH AND USE DATA STRUCTURES

The with and use data structures, shown in figure

5-2, are used for package elaboration. When a with-clause

is found in the abstract syntax tree the symbol table and

code for the package must be read in from secondary
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storage. Before reading them in a search of the with list

is done to ensure a package is only elaborated once. The

current environment is also searched to ensure the package

has been previously compiled and the symbol table and code

for it exist. As the symbol table is read in the

addresses of all procedures and functions must be updated

to indicate the new address currently being used. This is

very easy to do since the new address will be the old

address plus the current offset in the code array. The

new package name is added to the with list and processing

continues.

struct with-list
C
int name, /* pointer to package name in */

/* syntax tree */
first, /* index into symbol table to */

/* first and last symbol table */
last; /* entries for the package.

struct with list *next; /* pointer to next */
/* package name

struct use-list
C

int name; /* pointer to package name in */
/* the syntax tree */

struct use-list *next; /* pointer to next */
/* use list

Figure 5-2 With and Use data structures

When a use-clause is encountered the with-list is

checked for the name of the package. If it is not found
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an error is reported since a with clause for that package

must precede the use-clause. If found the current

uselist is searched to see if the package is currently

visible. This is done to avoid having two or more

occurrences of the same package name in the use list.

This speeds up the search process for the symbol table

routines since they only have to search a package's symbol

table once. If not found in the use-list the name is

added to the use list and processing continues.

5.3.2.1 CHANGES TO SYMBOL TABLE ROUTINES

When packages are added to the subset some changes

are needed in the symbol table routines. The first change

is the lookup routine must be changed to search not only

the current symbol table but also the symbol tables of any

visible packages. The packages that are visible are the

ones that have been added to the use-list. A consequence

of this is that when the symbol table is peeled back to a

previous level any use clauses that are no longer visible

must be removed from the use-list.

The symbol table lookup routine must also be able to

search for qualified names like A.X where A is a package

name and X is a name declared within the package. This

simply means the with list must be searched for package A

and the the symbol table for package A is searched for X.

The fields of the two structures are explained well
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enough in Appendix E so no discussion of the fields is

included here.

81

o



U EA I

ULTIMATE GOALS AND ENVIRONMENT

6. ULTIMATE GOALS AND ENVIRONMENT

The ultimate goal, of course, is to get a full Ada

compiler implemented. This should be done with certain

other goals in mind. To blindly implement the full Ada

language without any thought to the remaining development

environment would be foolish. These other goals concern

the environment in which the programmer must function.

Each of these goals is aimed at improving programmer

productivity and reducing the time spent testing and

fixing a program. These goals are incremental

compilation, development of a multitasked environment, and

semantic specification of the language in use.

6.1 INCREMENTAL COMPILATION

The aim of incremental compilation is to further

reduce programmer idle time during the development cycle.

This is accomplished by reducing the time needed to

compile a program. The syntax directed editor already

does some of this by maintaining the abstract syntax tree

between compiles. This eliminates the need to reparse the

program each time it is compiled.

Another aspect of this is the fact that the source

code usually changes very little when a correction or

addition to it is made. This means that most of the code

the compiler generated on the previous run is still valid
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and could be reused if some method were devised to tell

the compiler which nodes had changed.

One method of doing this is to have the syntax

directed editor mark each node in the abstract syntax tree

with a flag to indicate no change, a change in this node

or a change occurred at some point below this node. Links

between the generated code and the abstract syntax tree

must also be maintained since the compiler must be able to

change the code if necessary. Since the compiler would

only have to generate code for those parts of the program

which had changed, significant time could be saved.

Two types of changes can cause problems for an

incremental compiler. The first is any change in the

Jeclaration of variables or subprograms. Since these

changes may have far reaching effects even on sections of

the program which have not changed a complete recompile

might be warranted. This is especially true in Ada

because of the problem of overloading and the fact that no

automatic type conversions are allowed.

The other problem is more specific to Ada. It is

caused when the environment or context of a program is

changed through new or different use and with clauses.

Once again a total recompile might be warranted. Since a

programmer would know when these changes had been made, he

could control the compiler through a pragma to turn the

incremental feature on or off.
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6.2 MULTITASKED ENVIRONMENT

Multitasking, which Ada supports, is another means of

reducing unproductive time. Since the CPU tends to be

relatively idle while it waits further user inputs, an

incremental compiler and/or a semantic analyzer could be

run as separate yet parallel tasks to the editor. The

syntax directed editor could trigger either one to analyze

a section of code that the user had just entered or

changed. A specialized interpreter/debugger might also be

written to allow the programmer to test small sectiois ef

code independent of the rest of the program.

When this happens the tools seem to merge into one

multipurpose tool which the programmer can use to assist

in the development of programs. Using this tool properly

the programmer sees faster turnaround and a program that

is ready to test almost as fast as it can be cntered into

the system. The programmer may also feel more confident

that the program is correct since sections of the code can

be tested as they are written.

The multitasked environment does present some

problems to be solved. These are mainly in the interfaces

between the tools and how the data structures in use are

protected. The implementation cannot allow two or more

tools to work on the same limbs of the tree unless th? two

tools are compatible. A typical example that must be

disallowed is having the editor delete a subtree while
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another tool is working on that same subtree.

6.3 SEMANTIC SPECIFICATION

New means have been developed to extend the syntax

description of a language to include its semantic

specification (Ref 9,13). These extensions could be

incorporated in a way that would allow the syntax directed

editor to use the semantic information to prevent semantic

as well as syntactic errors. This is no trivial task

since a change in a declaration may have far reaching

effects. To be used by a programmer, such a tool must not

make the programmer wait after such a change has been

made. This probably means that the semantic checks would

be done in background and errors reported to the user

giving the user the option of correcting the error

immediately or continuing with the current effort and

returning to fix the errors later.
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7 RECOMMENDATIONS

Extensions to this thesis effort could continue in

several directions. Several major extensions were

presented in the previous chapter. Since they are the

ultimate goals of this effort, any extensions should be

done with them in mind.

Perhaps the most important continuation would be the

implementation of the tools designed and described in

Chapter 5. The extensions that were designed are the

semantic analyzer, the data structures necessary for data

types and packages, and a method to allow parameter

passing to functions and procedures.

7.1 ADA SUBSET EXPANSION

The mos obvious continuation from this point would

be to continue expanding the implemented subset until a

full Ada compiler is available. This would be not only a

good academic exercise but would also be useful to AFIT

since it would provide the school with a new tool to use.

The easiest direction to take in this effort would

probably be to adapt the run time machine developed by

Alan Garlington (Ref 11). Since his run time machine

already allows tasking, The design of such a mechanism

would be avoided.
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7.2 REWRITE TOOLS INTO ADA

The other direction to take with this effort is to

quit expanding the subset and to rewrite the entire system

into Ada. This becomes especially attractive since

several Ada compilers have been validated and should

become available for use soon. Using a full Ada compiler

avoids the problems of doing the rewrite with the current

subset.

The first of these problems is speed. Since the

current implementation compiles to an intermediate code

that is interpreted the compilation of a package as large

as the cur.:ent support environment would be extremely time

consuming. This speed problem would also show up during

execution since interpreting code is much slower than

running the equivalent machine code.

The other drawback is memory usage. Currently the

abstract syntax tree representation of a program takes

about eight times more memory than the equivalent text

representation. Another problem is the symbol table and

code array are limited due to the way they are

implemented. This could be solved by implementing them in

a more dynamic fashion such as a linked list.
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7.3 SUPPORT ENVIRONMENT

Other directions related research might take involve

the tools in the support environment. Either the current

tools could be enhanced or new tools written. Several

useful new tools come to mind. These include a code

lister, a code optimizer, online help facility, and a

program converter.

7.3.1 CODE LISTER

The code lister, as currently implemented, is a

simple tool used only to extract the code generated by the

compiler and print it for the programmer. The power of

the code lister could be expanded to include the source

lines that generated the code. Since the code is already

linked to the abstract syntax tree, the source code is

available and could easily be included in the listing.

Shown with the generated code, the source code could prove

useful in showing the programmer how he could have written

a fragment of code more efficiently. Another use this

could have is as a debugging aid. The programmer could

study a fragment of code and see exactly how the compiler

interpreted the source code. This might help him spot an

error that was caused by how an expression is evaluated.
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7.3.2 CODE OPTIMIZER

A code optimizer could work on the generated code to

optimize the code with regard to some characteristic the

programmer wanted to improve. This characteristic could

be execution speed, more efficient memory usage, or any

other measure the programmer desired. The optimized code

could be either machine language code or code for the

interpreter.

7.3.3 ONLINE HELP TOOLS

Online help tools would be useful for training or as

a ready reference during the development stage. Several

tools come to mind. The first is a tool that would tell

the user what command the syntax directed editor will

accept at that point and exactly what the command would

do. This could be done either through a query by the user

or intelligently by the editor as it realizes the user is

having problems. A second tool would allow the programmer

to check what constructs the syntax would currently accept

and what each of them are.

7.3.4 PROGRAM CONVERTERS

Program converters fall into two basic categories.

The first would be a tool to convert a program written in

one subset of Ada into an expanded subset. This would
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probably have to be done with programmer intervention

where a choice has changed or a newly required component

is needed but it would save time since programs would
become upwardly compatible. This would be especially

useful if the support environment were rewritten into the

Ada subset before a full Ada compiler is available.

Another type of program converter would translate the

abstract syntax tree representation into some other

intermediate form. This could be used to transfer

programs from one machine to another. Since the Ada

standard has proposed a new language, Diana, be used for

this purpose, it could serve as the target language. This

would allow programs such as the editor to be more easily

transferred from one computer to another.

7.3.5 INTERPRETER

The current interpreter could be improved to run

faster, use less memory or a combination of the two. It

could also be changed to do dynamic type and range

che:king. Since tasking is a feature of Ada, a tasking

interpreter could be written either from Garlington's

design (Ref 11) or a design of the user's choosing.
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7.3.6 PROGRAM LISTER

The program lister could be improved to give the

programmer a more detailed listing of the program. One

such improvement could be the generation of a cross

reference listing for the program.

7.3.7 DEBUGGING TOOLS

The debugging tools could be improved to do more run

time checks and some execution analysis. The execution

.5 analysis could include listing how many times a statement

*. was executed, detecting that a variable is used before it

is initialized, or detecting that certain fragments of

' code are unreachable and are therefore can be eliminated.

Another debugging tool that could be written is a tool to

automatically generate test data based on an analysis of

the program being tested.
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APPENDIX A. META DESCRIPTION FOR THE ADA1 SUBSET

The following is the META description of the ADAI

subset implemented by the ADA1 compiler.

compilation =
compilationunit ;

compilation unit = <
func_body
procbody >;

funcbody =
programheader ]

@ func_spec is
( + decl ]
+ + programcomponent I

@ "begin"
+ seq_of_stmts

@ "end" [ designator ] ";" ;

i, func_spec=
"function" - designator "return"

A subtype_indication

designator = <
identifier >;

procbody =
[ program header ]
@ proc_spec ^ "is"

( + decl I
( + programcomponent I

@ "begin"
+ seq_of_stmts

@ "end" [ identifier ] ";" ;

programheader =
comment

@ @ comment I ;

proc_spec =

del "procedure" identifier

4- decl=
objectdecl [ comment I ;
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programcomponent = <
funcbody
proc-body >;

seq_of_stmts -

stmt

( @ stmt 3 ;

identifier =
'AZIaz' C '091AZI_ az' 3

object decl =
id list ":" [ "constant" ] object_type

initial ] ";" ;

stmt=
simple_stmt [ comment ;

id list =
identifier C identifiers 3 ;

object_type = <
subtype_indication >;

initial =
expression ;

simplestmt =<
assignmentstmt
if stmt
loop_stmt
returnstmt
proccall
comment
null stmt >;

identifiers =
identifier

subtype_indication =
"integer"
"boolean"
"char" >;

expression = <
relation
andcomp
or_comp
and_thencomp
orelse comp
xor_comp >;
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assignmentstmt =

name ":= expression ";"

if stmt =
"if" - expression - "then"

+ seq_of_stmts
( @ elsif part ]
( @ elsepart I
@ "end" "if" "; "

loopstmt =
iteration-clause ] "loop"

+ seq_of stmts
@ "end" ""loop"" ;

proccall 
name ";"

return stmt =<

procedure return
-' functionreturn > ;

comment =
.__ , 3' ;

null stmt =
-- "null;" ;

procedurereturn -

"return;"

function return =
Treturn" expression ";" ;

name = <
identifier >;r

relation =
simpleexp [ relation_part ! ] ;

andcomp =
relation ( and-relation 3 ;

orcomp =
relation ( or-relation 3 ;

and then comp =
relation C and then relation 3 ;

orelsecomp =
relation ( orelserelation 3 ;
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xor comp =
relation [ xor relation 3

elsifpart l
"elsif" expression - "then"

+ seq_ofstmts ;

else_part =
"else"

+ seq_ofstmts ;

iteration clause = <
while clause >;

simpleexp =
[ unary-operator ! ] term [ terms ;

relation-part = <
relational >;

and-relation =
"and" relation ;

or relation r
"or" relation

andthen tn relation
and then" relation

oorelse e relation r-- -"or else" relation;

xor relation r
"xor" - relation

while clause
"while" = expression ;

unary_operator =<

"-" >

term
factor ( factors ) ;

terms -
add_op term

relational -
rel_op simple_exp
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factor =<
exp_primary
abs_primary
not_primary >;

factors =
mulop factor ;

exp_primary =
primary [ expon_part ! I ;

expon_part =
abpimr primary

abs_primary pnabs" - primary;

notprimary p
"not" - primary

add_op = <

- rel_op =<
to =: ; ,, / =.,,

> if
. ,, >=,, >;

'>;

primary = <
decimal number
name
nested exp
char lit
boolean value
func caTl >;

func call =
designator "(" ")" ;

mulop = <

"/",

"mod"

"rem" >;

decimal-number =
integer ;
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nestedexp =

"(" expression ")"

integer
'09' ( '091_'

char-lit =
,, I ) 1 l o o I ,

boolean value = <
"true"

"false" >;
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APPENDIX B. OUTPUT OF THE META PROGRAM

The following is the output produced by META when the

ADAI grammar was used as input.

META 10/15/82

Source input = adalx.syn.
Output file = adalx.sdf.
Goal symbol: compilation.

item name ........................... used.. term/non..
alt/cat..

2 set
, 2 terminal

2 terminal
2 terminal

* 1 terminal
** 1 terminal

2 terminal
1 terminal
2 terminal
1 terminal

/ 1 terminal
1 terminal

09 1 set
09(AZI_Jaz 1 set
09_ 1 set

1 terminal
2 terminal
8 terminal

< 1 terminal
<= 1 terminal

1 terminal
> 1 terminal
>= 1 terminal
AZIaz 1 set
abs 1 terminal
abs primary 1 non-term cat
add-op 1 non-term alt
and 1 terminal
and then 1 terminal
and comp 1 non-term cat
and-relation 1 non-term cat
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and then comp 1 non-term cat
and then relation 1 non-term cat
assignment stmt 1 non-term cat
begin 2 terminal
boolean 1 terminal
boolean value 1 non-term alt
char 1 terminal
char lit 1 non-term cat
comment 5 non-term cat
compilation 1 non-term cat

a single unconditional term.
compilationunit 1 non-term alt
constant 1 terminal
decimal-number 1 non-term cat

a single unconditional term.
decl 2 non-term cat
designator 3 non-term alt

a single alternative.
else 1 terminal
elsepart 1 non-term cat
elsif 1 terminal
elsif_part 1 non-term cat
end 4 terminal
expprimary 1 non-term cat
exponpart 1 non-term cat
expression 7 non-term alt
factor 2 non-term alt
factors 1 non-term cat
false 1 terminal
funcbody 2 non-term cat
func call 1 non-term cat
func spec 1 non-term cat
function 1 terminal
function return 1 non-term cat
id list 1 non-term cat
identifier 6 non-term cat
identifiers 1 non-term cat
if 2 terminal
if stmt 1 non-term cat
initial 1 non-term cat
integer 1 terminal
integer 1 non-term cat
is 2 terminal
iteratioh clause 1 non-term alt

a single alternative.
loop 2 terminal

loop_stmt 1 non-term cat

-_~~i*~~101



APPENDIX B

mod 1 terminal
mulop 1 non-term alt
name 3 non-term alt

a single alternative.
nestedexp 1 non-term cat
not 1 terminal
not primary 1 non-term cat
null; 1 terminal
null stmt 1 non-term cat

a single unconditional term.
objectdecl 1 non-term cat
objecttype 1 non-term alt

alternation alternative: subtypeindication.
a single alternative.

or 1 terminal
or else 1 terminal
orcomp 1 non-term cat
or elsecomp 1 non-term cat
or else relation 1 non-term cat
or-relation 1 non-term cat
primary 4 non-term alt

alternation alternative: name.
alternation alternative: boolean value.

proc_body 2 non-term cat
proc_call 1 non-term cat
proc_spec 1 non-term cat
procedure 1 terminal
procedurereturn 1 non-term cat

a single unconditional term.
programcomponent 2 non-term alt
programheader 2 non-term cat
rel_op 1 non-term alt
relation 11 non-term cat
relationpart 1 non-term alt

a single alternative.
relational 1 non-term cat
rem 1 terminal
return 2 terminal
return; 1 terminal
return stmt 1 non-term alt
seq_ofstmts 6 non-term cat
simple_exp 2 non-term cat
simple_stmt 1 non-term alt

alternation alternative: returnstmt.
stmt 2 non-term cat
subtype_indication 2 non-term alt
term 2 non-term cat
terms 1 non-term cat
then 2 terminal
true 1 terminal
unary_operator 1 non-term alt
while 1 terminal
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while clause 1 non-term cat

xor 1 terminal

xorcomp 1 non-term cat

xor-relation 1 non-term cat

121 elements described.
312 nodes in syntax description file.

0 errors detected.
META processing complete.

103



APPENDIX C

APPENDIX C. DESIGN FOR PASSING PARAMETERS TO SUBPROGRAMS

1. Find the subprogram name in the symbol table.

2. Get the next parameter from the associated parameter
list.

3. Determine the type parameter it is. If it is an in
parameter goto step 4. if it is an out or an in out
parameter goto step 5.

4. Call expression to evaluate the parameter. A type
will be returned verify the type is correct.
Generate an instruction to pop the stack. This last
instruction is put into a list so that it can be
appended to the code array after all parameters are
evaluated. Goto step .

5. Verify the actual parameter is a variable name that
has a location associated with it. If not generate
an error that says the parameter must be a name and
not an expression.

6. Check if the actual parameter is an indexed
component. If it is then goto step 9.

7. If the formal parameter is an out parameter generate
an instruction to load the undefined value. If it is
an in out parameter generate the code to load the
value.

8. Generate an instruction to store the value back and
prepend this instruction to the list of instructions
that will be added to the code array after all
parameters are processed. Goto step

9. Generate code to evaluate the index. If the
parameter is an out parameter goto step 10. If it is
an in out parameter generate an instruction to copy
the index to the index stack. This instruction will
leave the index on the run time stack. Generate an
instruction to load the value onto the stack using
the index on top of stack. Goto step 11.

10. Generate an instruction to move the index from the
run time stack to the index stack. This instruction
removes the index from the run time stack. Generate
an instruction to load the undefined value onto the
run time stack.
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11. Generate an instruction to save the value when the
procedure returns. Prepend this instruction to the
list of instructions to be added to the code array
after all parameters are evaluated.

12. Check if another parameter is needed for this
procedure. Check if a parameter is available. If
both are true goto step 2. If not generate an error
saying either a parameter is missing or an extra
parameter was passed.

13. Append the list of instructions being, held at bay to
the code array.

14. Return control up the tree.
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APPENDIX D. A DESIGN FOR THE SEMANTIC ANALYZER

1. If the expression is a function call goto step 34.

2. If the expression is a procedure call goto step 23.

3. If the expression is a name goto step step 19.

4. (Expression still has an operator) Find the
controlling operator. It is the rightmost operator at
this level in the tree.

5. If the operator is a unary operator goto step 18

6. (Binary operator) Find all occurrences of the operator
in the symbol table. If none return error.

7. Create an operator list entry for each occurrence.

8. If a type list was passed in eliminate any entries in
the operator list that cannot return one of the desired
types.

9. If the operator list is empty return error.

1 10. Create the left operand list from the operator list.

11. Call the semantic analyzer with the left operand list
and the left hand operand.

12. If error is returned return error.

13. Compare the returned type list with the operator list.
Eliminate elements from operator list whose left hand
operand type does not appear in the returned type list.

14. Repeat steps 9-13 for right hand operator.

15. If the list is empty return error.

16. If the operator contains a single entry goto step call
pass3. If pass3 returns error return error.

17. Create operand list from the return types of the
operator list. Return this list.

18. (Unary operator) Same as a binary operator (steps
6-17) except only done for a single right hand
operator.

19. (Name) Find all occurrences of the name in the symbol
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table. If none return error.

20. Create an operand list element for each entry.

21. If a type list was passed in eliminate the unavailable
types from it by comparing it to the operand list
created in step 20. Return the modified type list.

22. No list passed in return the operand list generated in
step 20.

23. (Procedure call) Find all occurrences of the procedure
name in the symbol table. If none return error.

24. Count the number of actual parameters used in the
procedure call.

25. Create a list of the procedures found in the symbol
table which need that number of parameters. If the
list is empty return error.

26. If no parameters are needed and more than one procedure
is possible return error. Else mark the syntax tree
node with the symbol table entry of the procedure name
and return success.

27. Repeat steps 28-32 for each parameter and procedure in
turn.

28. Check if the first actual parameter is a name or an
expression. If it is an expression eliminate all
procedures that require an out or in out parameter. If
the list is now empty return error.

29. Create an operand list from the procedure list for this
parameter.

30. Call the semantic analyzer with the operand list and

the first parameter.

31. If error is returned return error.

32. Compare the returned type list with the procedure list
and eliminate any procedures which do not have this
parameter available.
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33. If two or more procedures remain in the procedure list
return error. If only one remains call pass 3 with
each parameter and its type in turn. Return success.

34. (Function call) Same as procedure except as noted
below.

35. Add step 25a. If a type list is passed in compare it
to the types that can be returned. Eliminate any
functions which cannot return a valid type.

36. Eliminate step 28 since only in parameters are allowed.

37. Change step 33 to If two or more functions remain in
the list create the type list from their return types
and return the list. If a single function is in the
list call pass 3 with each parameter and its type in
turn. If pass 3 returns error return error. Otherwise
return the type of the function.

PASS 3

Pass 3 is very similar to the actual semantic analyzer

except that no multiple types are allowed to be returned.

If at any time during this pass an ambiguity cannot be

resolved the expression is in error and error is returned.

As each node of the syntax tree is correctly typed it is

marked with the appropriate symbol table pointer and a flag

is raised to indicate the expression is ok below this node.

Pass 3 must check this flag before it descends the tree

further. This is only to avoid resolving ambiguities more

than one time.
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APPENDIX E - SYSTEMS USERS MANUAL

This appendix describes how the compiler,

interpreter, and code lister are invoked, the inputs they

expect and the outputs they produce.

Before any of these tools can be used a program must

be entered using the syntax directed editor. The syntax

directed editor is invoked with the command, synde TEST

adalx. This command will produce a program file named

TEST using the language ADAIX. For more information on

using the syntax directed editor refer to the syntax

directed editor users manual (Ref 9).

E.1 INVOKING THE COMPILER

The compiler can be invoked in three ways, from the

syntax directed editor, directly by the user, or by the

interpreter.

E.1.1 FROM THE SYNTAX DIRECTED EDITOR

To invoke the compiler from the syntax directed

editor simply enter the invoke compiler command. This

command is selected by the user when the editor is

configured using the CONFIG program (Ref 9). The compiler

can be used in this way to do a preliminary semantic check

of the program.
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The compiler will flag up to five errors using

program tree markers. The compiler will halt processing

when either all error markers are used or the compilation

is complete. If invoked in this manner the compiler will

return control to the syntax directed editor with the

focus set at the first error in the program or at the root

of the program tree if no errors were detected. The user

can then correct any errors and continue entering the

program.

E.1.2 DIRECTLY BY THE USER

The second way to invoke the compiler is with the

command adalxC TEST, where TEST is the program the user

wants to compile. The compiler will still flag up to five

errors and will return control to the command level when

five errors are found or compilation is completed. To fix

an error the user need only invoke the editor with the

command, synde TEST. The editor will put the focus at the

first error or at the root of the tree if no errors were

detected.

E.1.3 FROM THE INTERPRETER

The third way to invoke the compiler is through the

interpreter. The interpreter calls the compiler to

generate the code it is to interpret and to link that code
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p

to the abstract syntax representation of the program. The

interpreter is invoked as shown below.

E.1.4 COMPILER INPUTS AND OUTPUTS

The compiler expects no special inputs other than the

program file given on the command line. The compiler

produces a file called TEST.cod where TEST is the name of

the input program file.

E.2 INVOKING THE INTERPRETER

The interpreter can be invoked in two ways, from the

syntax directed editor, or directly by the user.

E.2.1 FROM THE SYNTAX DIRECTED EDITOR

To invoke the interpreter from the syntax directed

editor simply enter the invoke interpreter command. This

command is selected by the user when the editor is

configured for the terminal in use (Ref 9). The

interpreter can be used in this way to do a preliminary

semantic and logic check of the program. This can be

especially useful if the user is not certain what a

specific instruction will do.

The interpreter first calls the compiler to compile

the program. The compiler works as described above. When

control is returned to the interpreter, it checks if any
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errors were detected. If some were the interpreter asks

the user if execution is to continue. If not control is

returned to the syntax ,iirected editor as described above

with the focus at the first error. If execution is

allowed or the program had no errors, the execution

routine is called. Operation of the execution routine is

explained below.

E.2.2 DIRECTLY BY THE USER

The other way to invoke the interpreter is with the

command adalxl TEST. This will cause the interpreter to

compile and execute the program TEST. The interpreter

functions as explained above except that control will be

returned to the command level rather than to the syntax

directed editor.

E.3 PROGRAM EXECUTION

When a program is executed control is returned to the

user. The user is given a display showing the program,

the top few elements of the program stack, and the next

instruction to be executed. The portion of the program

thought responsible for that instruction is highlighted in

reverse video. The user is also given a choice of four

commands to input. The four commands are single step,

continue execution, restart, and exit.
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Any command not described below is ignored and the

user is prompted to enter a new command.

E.3.1 SINGLE STEP

The single step command, invoked by 'S' or '

causes execution of the displayed instruction. The

display is updated and the user is shown the new program

stack, the next instruction, and the next program fragment

is highlighted. If the instruction executed was the last

instruction of the program or an INVALID instruction, the

interpreter is reset to reexecute the program from the

beginning, and the display is reset to its initial state.

E.3.2 CONTINUE EXECUTION

The continue execution command, invoked by 'C',

causes the interpreter to execute the program in a

continuous fashion until the end of program is found. The

displays are updated as if the user was single stepping

the program very rapidly. When the end of the program is

found the interpreter is reset as before and the user is

prompted for further inputs.

E.3.3 RESTART

The restart command, invoked by 'R', causes the

interpreter to reset itself to its initial state. Program
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execution will continue at the start of the program.

E.3.4 EXIT

The exit command, invoked by 'E', causes the

interpreter to halt execution and return control either to

the syntax directed editor or to the command level

depending on how the interpreter was invoked.

E.3.5 INTERPRETER INPUTS AND OUTPUTS

The interpreter expects only those inputs described

above. Any other inputs are ignored. The interpreter

produces no outputs of its own other than the displays

described above. The compiler does produce the file

TEST.cod where TEST is the input program file name.

E.4 THE CODE LISTER

The code lister is invoked by the command, codelist

TEST, where TEST is the name of the program whose code the

user wants to list. The file TEST.cod must exist. This

is the file produced by the compiler when the program is

compiled. The code lister produces an output file called

TEST.codlst. This file can then be read and displayed by

any program which uses a standard text file as input such

as cat, more, vpr.
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# 00000 00 00 00 00 00000 00000 *

# 00 00 00 000 00 00 00 00 a
# 0000 0000 00000 00 00 0000 a
§ 00 00 00 000 00. 00 00 #

* 00000 00 00 0 00 00000 00000 a
* a

# SYNtax-Directed Editor (c) Copyright December 1992 #
* CAPT. Scott Edward Ferguson, USAF, AFIT 6CS-820 a
a Modified October 1993 #
a CAPT. Michael L. McCracken, USAF, AFIT GCS-83D §
a a

# SYNDE.H a
a Define global information types and values for SYNDE data a
# structures. a

*include (stdlo.h>

linclude "ctype.h"

fdefine SUCCESS I Ia success return value Vl

Idefine ERROR (-I) I' error return value Vl

/# special defined types al

define RES register int /* type for register optimization I/

*define BOOL jot / type declaration for boolean values ai
Idefine TRUE I /a boolean TRUE constant '1
idefine FALSE 0 /a boolean FALSE constant ai

/ file action status 'enumeration* values

Idefine TO.LIST I /# vector execution to lister a/
Ndefine TO-CORP 2 /a vector execution to compiler a1
Nefine TO.INT 3 1a vector execution to interpreter f/

lefine TO.SYN 4 iS vector execution to synde C1
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S Abstract Syntax Tree (AST) node description.
,,e..,e,,e.,.**st*0******5***454*4*****,****454144*********

struct ast node I /, AST node structure #/
char

aflags$ IS AST node flags (described below) */

a.valuel /0 contains character (or 0) for a node 0/

I corresponding to a set' elementsl
unsigned

a prod, / 'pointer' to synta eleeont V1
c, corresponding to this node 0/

aright, /# 'pointer' to right sibling; if RTNOSTO/
le is set, this points to father 9/

A sonl /f 'pointer' to node's leftmost son or a/
/5 NIL if node is a leaf node VI

)

Wefine NIL 0 /a NIL pointer to $no' AST node f/

I a flags masks for bit-field values Vl

#define RTOST ONOl / node is rightmost son 0/

define LTOST 0x02 I' node is leftmost son V/

@define ONLY 0%03 I node is only child (left and right) /

#define ROOT 0x04 /* node is an AST tree root Vl

Hefine OPEN OxlO / node is an unsatisfied conditional o/

#define ELIDE 0%20 /t mark to suppress display of subtre t /

Idefine HARK 0%40 /§ node is marked in f mark list C/

Idefine FREE WO /§ node is free (unallocated) @/
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ie.uaoessasssaosooiaaeasasaeaesaseeeeooemso.a*.saa**a*,,***

* Syntax Tree node description. a
*aaasae*el,a,s,s***HJHssaallssa**aaa*aasalaas*elasn

struct synnode (
unsigned

sfl g, I node flag Idescribed below) V/
silink; 0s if header: Vl

/# *pointer* to nan string#/
/i If element: a/
it epointer' to header /

define MAX-ALT 20 I max number of alternatives Vl
I in an alternation #1

/# s flags masks for bit-field values ./
/§ for a definition header node-- V

Idefine ALT 010001 i alternation rule header V/
df ine CAT 0.0002 / concatenation rule header #/
idefine RULE 0%0003 /# rule header Vi
Idefine STR 0.0004 /# string header V/
Idefine SET 010008 /§ sat header i
Idtfine HEAD Ox0OOF I node is a header node 0/

/f for a rule element node--- 5/

Idefine OPTION 00010 Ia optional rule @Iment VI
Idefine REPEAT 0.0020 /0 repeated rule element /
define CON 0.0030 0s conditional OPTION or REPEAT V/

Idefine HIDE 0.0040 i0 hidden conditional Vi

/# output formats: V/
Idefine NNLINE 0.0100 I newllne Vi
Nefine INDENT 0%0200 / indent land neline) '/
Idefine LINE Ox0300 /§ generates new line Si

#define PRESP 0.0400 /# space precedes node *1
HdefIne POSTSP 0.0800 /# space follows node V/

imsnaanttaaaaai*e4t*a~ata*sHssat,alsas*a**ta,,esasassas

5 Image Generation parameters. a

fdefine VIDE 132 /f max screen width in characters ,1
NHefine DEEP 30 /0 ma screen depth in lines Q/
tefine HILITE 00 /# highlight bit for display V1
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IOe~e4eOot*eeof4O46O~atoaol4He4444e4***O44@eo@5ooooaoo4*65

# Source File inforeation block. #
**e**.**c** *e********4***********4tee e ****e***.e400ct*4*

struct fileainfo C
int f-bufl
char

f.nae"ll3 /4 creation file nae V/
fjan(16], i associated language gramr name #/
f creatl6, i creation date f/
f.lastCI6], 14 last access date V/

f.conf(34 /5 configuration control information V1
ant

f.edit, If return control to SYNDE editor SI

f~update, if version update count /

*Iavail, 14 'pointer' to available list head #l
fjoot, /# "pointerl to program trot root V/
f.clip, if 'pointer' to clipping trot root Vl
fmark~lOll It place arkers, 5 thru 9 reserved as Vl

I. error markers Vl
)

* Terminal Description File characteristics block. #

I. input command 'enuoration' values /

efine RlIHT I if move right el
#define LEFT 2 /# move left V/
define .EAF 3 If move to leaf node Vl
4sfint LAST 4 Is move back to last focus V/
aefine UP 5 / ove up 1

define DOW 6 /5 move dora VI
Idefine .LUP 7 if long up (skip only child nodes) V/
Idefine LDOW 8 if long down (skip only child nodes) f1
Mefine -RING 9 if insert conditional right V1
Idefine LINO 10 I insert conditional left Vl
Idefine CLIP 11 / clip subtro '
define XL 12 if delete mubtrot (clip and kill) SI

Nefine KILL 13 /C kill subtree eV
Meflne .COPY 14 Is copy subtree o/
define JLIDE IS Ie elide suhtrot (suppress display) QI

Idefime HELP 16 /5 help #/
W4in, .NINON 17 If opelcioe seond inds. V

Nefine SEMCH 19 /, search for literal string #/
Nefine -AAIN 19 i Nearch again Q/
Ideflne HARK 20 Io set/clear node mrker CI
woefine .0 21 /# go to node earker 5/

ideine C01IP 22 is invoke copiler /
#define JNT 23 I invoke interpreter ,1
Ideflle LIST 24 IS invoke lister o/
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ef ine SYNBE 25 / invoke synde /
Idefine LRI6HT 26 /0 move right past identical siblings 0/
idef ine LLEFT 27 /# move left past identical siblings /

Hefine NOW 28 /1 clear scre and redru it #/
Idefinie UVE 29 /# save all current changes /
Wefino ATi 30 /0 wite to any liven file I
Idefine JilT 31 /0 nit edit session (last comnmnd) 0/

struct tore info C
ant lines, I lines per screm ,/

chars, /5 characters per line V1
usize, le window size C/
111[51 /0 (reserved for expansion) el

char cods(32)(O), /s csoand input sequence strings C/

/f terminal control output sequences: V/
init(16), /C terminal initialization V/
tab(), /5 tab display string V/
elide(l), /C elision display string 5/
div[l), It windo divider I
€lr() 1, I clear screen
pos(i), IS position cursor ei
tel(S), I erase to end of line Ci

dc(S), /s delete character V/
revol), /5 enter reverse video ode /
norm(S), /5 exit reverse video mode /
Ion(S), IC enter insert character mode V/
ioff(S), IC exit insert character mode sI

il(), i insert line SI
dlif), /0 delete line /
fini[163; /e terminal termination S1

)I
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IeIOCaeseaeeHeeeleeaeelsHe9eoaeejeeeelueeaeecteeeeee i

l9 SYHIOLH 'I

/9 Symbol table structure for compiler generation. 9l

/edeee eeono e~eiH H iHeeefleeesees eeee ieeaeeeee

struct sysotable ( /4 symbol table 91

ant
sys.node, /# node $pointer* to identifier :l
SySlevel, /# lo level V
sy.eaddr, /# offset address #/
syktype! /# symbol type V/

unsigned lyo-flagsl /# symbol table flags, described 0/
/# below. #/

)!

Odefine SYNOLS 50 /# symbol table size #/

I esf e4199e9fetffHFQIO4,e*9 1 ,te9 O9e999etfe9 taa499s H4e9949/
/ # #/

/# symbol flags - used to give more information about a #/
* / symbol nuMe, .I

* /a99efe~ael 9.ee99eQ49~99,9ee.9I~feefiee.9fl~llee.99it99~tel /

Hefine TYIPEVAR OX0001 I symbol is a variable #/
Nsefine TYPE.CONST OOO02 I# symbol is a constant #/
Nefine TYPIEPIOC 00004 /# symbol is a procedure #/

define TYPE.INIT 0.0006# symbol was initialized #/
#define TYPE.TYPE O,0010 ls yambol is a type nam #/
#define TYPE.UNC OxO020 / symbol is a functim 0/

/e variable types - predefined 9/

Idefine TYPE INT
Hefine TYPE.CHA 2
#define TYiPEOL 3
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Is ,I

I AAI.H V

linclude 'synde.h' Is system global information structures V1

Itnclude 'codt.h' / code generation structures ,1

*include 'sybol.h' I. symbol table structures V/

linclude 'types.h' Is production type definitions /

extern
struct code.word #code; /# pseudo-code Vl

extern
struct sym.table esyoboll /I symbol table V-

stern
int code.ptr, /# index of next code cell ,

sys ptr, /# top of symbol table 4/

level, / current lexical level V1
offset, /0 current offset in level ,V
ret.lst, /# return list for sub-prograes i
rettype, I* return type for a function */
body~typel /# current sub-program type #/

extern
char #type[LAST.PROD.], /s production types ,/

inoson,.bool.txp,eint-exp; /# frequent message strings /
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IC types.h - production type definitions .

64sfine MM. 0
64ef ino PLd I
#def ino "IMig 2
Hefine DIV. 3
#4.f i no MEG 4
Hefin. LES. 5
Hefine LEG. 6
kefime AU- 7
#dtfine BRT- U
#def ine GEQl 9
6sf ins AND.CU W10
6sf ine A.STMT 12
#4sf ins CUMST- 15
64sf in. DECMUHN 16
Idefine DECL. 17
Hsf ine ELSIF-P IS
6sf ine IF.STNT. 21
64sf in I.CLAI9E. 23
#def ine LP.STNT. 24
#definh MAKE 26
4sf ins M-EXP- 27

Hefine 03 CONP- 28
Usflne P-CALL- 31
6sf ins P CONP- 32
14sfine RELATION- 33
64sf ing UOP- 36
6sf ins REN- 34
Hefins ND 25
4sf ins AND-THEN-COHP 11

64sf in OA.ELSE.CONP- 29
64sfi I ON CONP- 37
4sf ins INTEGER- 22

Hefine BOOLEAN- 13
64sfia InsHALIT_ 14
#def ine IDENT. 20
64efine TUE 35
$define FALSE. 19
Resfine F3011- 38
4sf ins FALL. 39

64sfine P-80 30
64sfine RET.STNT- 40
6sf ins NOLEAN-YALUE- 41
4sf ine EIPON-PART. 42

6sf ins AlSIIPN V. 43
$dsf ine NOT-RI WAI. 44
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*define EIP.PRINARY- 45
Hof ino CMAI 46
Oduf jo PROC.RE.. 47
NIdf i n FUWC)ET- 49
Hefine CfluET- 49
Hof in# MOLIT. 50
Hof ine, LAITPIOD 51
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I. pseudo-code word description ,/
jei,,alaalaeaslteeeea*nnCCCCCC*CCCCCCCiti*CCCCCCC*CCCt*CCiCCitt

struct codeword
char

c.opcode, /0 operation code Cl
clabe; I label indicator C/

int
c.opl, /* first operand t/

c~op2, It second operand C/

c-node; i 'pointer' to AST node C1
IC which generated the C/
/C the code word. C1

Idefine WORDS 512 /C code table size C/

/# pseudo-code instruction operation codes C1
I TOP top of stack

define .AD 0 I eark code word for label (no code) #/

W ineia .3P 1 /s j* oopl 0

Hefine CPY 2 I copy TOP '/
1hidfine OTC 3 I E level opl, offset op2 I a TOP C/

define CAL 4 /# call subroutine op2 at level opl C/
#define iPC 5 /* jump if TOP false to opi *l

Hefine E 1 6 IC set TOP a (TOP-t - TOP) Cl

tdefine -NED 7 /e set TOP a (TOP-i != TOP) .1

define .LES 8 IC set TOP a (TOP-I (TOP)
Mefine -LED 9 Ie set TOP a (TOP-I (a TOP) Cl

#define 6RT 10 /f st TOP a (TOP-i > TOP)
Hefins .EQ II IC set TOP x (TOP-I )a TOP)
Hefine NEH 12 I st TOP a -(TOP) C1
$dfine ADD 13 IC set TOP a (TOP-I + TOP )l
Idefine SUM 14 I st TOP a (TOP-I - TOP) C1

Hefine AU IS /C st TOP m (TOP-I C TOP) Cl

#define .DIV 16 IC set TOP a (TOP-I I TOP) *1
#define LIT 17 /st TOP o I C/

HWfine .LOD 18 I st TOP a I level opil offset op2 I C1

Mefine RET 19 I return from subroutine 0/

Nefine AND 20 /e st TOP a (TOP-I & TOP) .1

Idefine 0R 21 IC set TOP a (TOP-I I TOP) Cl

*define -NOT 22 I st TOP a (TOP) CI

Wefine .KS 23 IC stack pointer -a opi C1
ldefine -NOD 24 /C set TOP a (TOP-I sod TOP) C/

Hefine AEN 25 IC st TOP a (TOP-I ree TOP) Cl

Idefine ANDTHEN 26 /C jump if TOP false to opi Cl

efine OR.ELSE 27 IC juep if TOP true to opi C1
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define .XOR 28 /f set TOP x (!TOP-I & TOP) I (TOP-i & !TOP)#/

define ADS 29 /# set TOP a abs(TOP) eV

define .ExP 30 /* set TOP a (TOP- to TOP) */

Odefine AOOP 31 / no operation j/
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/4 ctype.h - global defines and one line functions V/
it replaces the UNIX file ctype.h a

*define, U 01
Idefine ~L 02
def ine, N 04
Idefine S 010
#define P 020
def ine C 040

Idefine -1 0100

extern char -ctypeCI;l

Odefine isalpha(c) ((_ctype_+l)clk(_U1L))
11efine isupper (c) ((_ctype_+1 CcI&-U)
Idefine islowr(c) (C.ctypv_+l)[cI&L)
ftefine isdigit(c) ((_ctyps_+l)(cj&N1
kefine Isxdigit(c) ((.ctypesl)Kc]&(-N1X))
#define i hmpact(cJ ((_ctyips1) tcl&-S)
OWefine ispunct(ci ((_ctypel)(c%_P)
Iefifle isainuelc) (( -ctypt_+l)Ici(_UIL.N))
Htfins isprint(c) ((-ctype+)Ccti(_P1_U1_L1N))
#dsfint i KlttlI (t) ((_ctyp1_+(cj& C)
Idtfint i %asi i Wc ((unsiqned) (c)(80177)
Hef ine tGASCH (C) M3ci0177)
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/0 00000 00 00 00 00 00000 00000 '
It 00 00 00 000 00 00 00 00/
/0 00000 0000 00 0 00 00 00 0000 0

/000 00 000000 00 00 0/
1000000 00 00 00 00000 00000 *

/0 SYNtax-Directed Editor (c) Copyright December 1982 0/

/0 CAPT. Scott Edward Ferguson, USAF, AFT SCS-820 01
/0 Modified October 1993 '1
I0 CAPT. Michael L. cCracken, USAFAFIT 6CS-83D 0/

le COMPILER.C o1
/0 SYNDE system compiler entry point. To be linked with COMPILE.C El
/0 and appropriate language specific compiler routines to produce 4/
Ie a language specific compiler. ,I

finclude Isynde.h4 It system global inforaition structures V1

#include 'types.h' It production type definitions 4l

extern Ia source file information 0/
struct file info src.info; 10 in AST.C 0/

char *enosono#boolexp, eint~exp
char types ILAST.PROD_;
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i*4E;44f* #C0e~tOE *i*CIEIHCCE0*@ *4i**4f*t********5**e*4/

I# main 4/
I Entry point and driver for compiler. 0/
/, C/
/e efl*41000iefleteeft~l*HHsIE*e~IifefeHHte*ICCfleeo~o/

main(arqcargv)
int argc; /f input argument count el
char *orgv!; /A input argument ptrs

{

puts(8CONPILER lllI3);

if (argc (2) /# check for source file name Cl

puts('Unspecified source file.');
exit 0;

/# initialize 4/
if ((ainit(argqviI) -- ERROR) 11 (sinit(srcinfo.fjlanq) -s ERROR))

exit ()

comillm()l /# generate pseudo-code for interpreter C1

a~wrap);
t.,raq();

if (src-info.f edit)

esecl ('synde', 'synde'larqv(l],2)1

puts('Cannot access SYNDE.')t
1
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/lsosoealoonso*sseeosssttsioaissos,i4,ssn,,,,,,j,,,,sio,,o,,s,,/

Is 00000 00 00 00 00 00000 00000 1
I0 00 00 00 000 00 00 00 00 /

1.00000 0000 00 000 00 00 0000 #/
la 00 00 00 000 00 00 00 V1
le 00000 00 00 00 00000 00000 V1

l. SYNtax-Directed Editor (c) Copyright December 1992 V-
/a CAPT. Scott Edward Ferguson, USAF, AFIT MCS-62D '1/f Modified October 1963 5l
/4 CAPT. Michael L. McCracken, USAF, AFIT SCS-63D 5/

I, COMPILE.C V/
AI SYNDE system generic entry point and utility routines for V1
Il compiler use. #/

'lnclude Isynde.h' / system global information structures #/

finclude 'code.h" I code generation structures #/
struct code-word #codel / pseudo-code El

linclude 'symbol.h' It symbol table structures 'I
struct syimtable #symboll /# symbol table ,1

extern /A source file data C/struct file info src infol Is in #SI.C

extern /# node production types #/
char #types(]; /# in language specific compiler fl

int code.ptr, /# index of next code cell #/
sym.ptr, /# top of symbol table 0/
errors, /# error count V
level, /# current lexical level V/
offset, /# current offset in level /
body.type, /s current sub-program type #/
rat type, Is return type from a function #i
ret 1stl /# return list from a sub-program 5/

BOOL gerror, Is code table overflow error V/
Wsrrorl Is symbol table overflow error *1
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/C compile C

/CInitialize compilation and generate code. Vl

compill()

REG size; /ecode size in bytes C

char code name(203; ICcode file name Vl
FILE #code-filel /ecode file descriptor #1
ant it

errors a level a syojatr a codeptr a01

gerror a serror a FALSEI

/# allocate a clear space for code generation memory 0/
if PMcode a mallocisize a sizoof(struct code uord)CNORDS)))

pvts(Olnsufflcient memoy for codo.9);
return ERROR;

ICallocate a clear space for symbol table memory C
if 4! (symbol a mallocisizeof (Struct sym-table1#1SYNOLSM)

putsVlnsufflcient memoy for sysbols.0);
return ERRR

for Ii n51 1<, (a91+1) /C clear all error markers e
if (src-info.f ark(il)

clrmark(srcltnfo.4marMlll

qo&I~srcjinfa.f root); I# goal Vl

Idelete old code file and save nev one
strcpy Icode-nae, srcjinfa. fmnae);
strcat codnaee, '.cod)I;
putsl'Code file a ')I pvts(codname)I puts4'.'hI
unlIink (codename) I
if (1codejlile a creat(codenam,0644)) -a ERRO 11

wrltelcodefile,code,size) !a size It
close (codejlle)I as ERROR)

i W r(COOdell
putosCannot generate code file.');
return ERRONI

freelsyubol); /# free symbol table (leave code) Vl
return errors;
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I Oaeoooe5* oo~O5*OH ee4 O *5444Oe *0o C45~oCO 55*eo 455oo H ***4*Oe@oo 4Ioo

/* collect al
I. Collect the set symbols in a siblin list iota the #/
i# supplied string. Return EIRU if a unsatisfied ad V
/4 unconditional set elment node is encoutered. 0

int Col lct (node, str)
ant nodal

char dstr;
(

RES netI

next * son(node);
for ( ; ; ) (

if (value(next))
bstr++ a value(next); /# transfer character o

else if (!chkflaq(next,OPEN))
Istr a 0I
return ERROR; /# unsatisfied uncond set Cl
)

if (chkjflaq(nextRTNOST))
#str m 0;
return SUCCESS; /* done el
I

next, right(next);

)

tI

I 1:31
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/C compare
Ia Compare the terminal 'set' children of two identifier Vl
/* nodes. Return TRUE if equal, Return ERROR if an eI

/0 unsatisfied and unconditional set element node is 5/
Ia encountered.

int comparminodel,node2)
int nodel, /a node 'pointers' e/

node2t

char idl(40],
id2(40];

if (collect(nodel,idl) as ERROR :1 collect(node2,id2) an ERROR)

return ERROR;
if (strcmp(idl,id2))

return FALSEI
return TRUE;
)

/ eeaHaae oa,|aeaaa aee~eeeeaeaoaoaa*CeeeaeaCfeC~iaoea~eo

Ia number #/

I Convert the terminal 'set' children numeric values from Vl
is an integer node and return the unsigned numeric value. f/

/# Return ERROR if an unsatisfied and unconditional set #/
i element node is encountered, e-

Sleeaifaaa..eeee..aaa4.OeCCeeaIeCCCCCleeHftnCeiseianflbe Jil

number (node, base)
let node, /e 'pointer' to subtree #l

basel /I numeric base #/
(

RIB aCCul I accuMlated value
char chi /# digit from set /

let Nesti /# sibling chain 'pointer' Il

next * eonnodel
eccue * @1 lea ccumlate digits el

for I D(
if ('Ich a valuelnext)) && !ch.flag(net,OPEi)

return ERROR; I exit if unstisfied ncditional set#/

if (suumricItmoppIr(ch),hase)) /# test base validity #1

KCu 8 accse # base + ((ch(i'9') 7 ch-'0' : ch-55)
if Ichk.flag(nest,RTUoST))

return accuml
net * right(netli

132

---- wii- .



APPENDIX F

/aaaelettiiattleeesetotaeeeeastteaataoastoeeeeaeeeeeaae/

Is gun CI

I Generate a pseudo-code instruction or label. Return Cl

/C the address of the generated word. Cl

gen (OPcodeoP, Ip2,node)
int opcode, /C pseudo-instruction op-code #/

opl, I, operand I l/
op2, I. operand 2 a1
node lC node responsible for code e/

(

sritch (opcode) (
case -LAB: codecodeptr.clabel •TRUE1

case HOOP: return codeoptr;

default: if (codeptr ), IORDS)
if (!gerror) (

puts(@Code table overflow.0);

+Oerrors;

gerror a TRUE;
)

return codejptr;

code(codeptr].c.opcode a opcode;
codetcodeptr].c opl a op*;
code#codejptrl.cop2 a op2I
codecodejptrL.€node a node;
return codejptr ;

Iol

/0 fix 41
IFix a forward reference by setting opi of the jump CI
/# instruction at the specified address to the current o/

I code.ptr. Cl

fix addr)
lnt addr;

{ IO fix jump and mark label C1
code(codeCddrlc.opl * codeptrl.c.label * TRUEI
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/0 find Vl
/# Find a symbol in the symbol table. Return the symbol #/
/# table index or ERROR if not found.

/ eittt4e4eilittttlfleta4~*4ae44iia44ei4ee0tetlt4aetit44l4itetitt~tie/

find(nodel
int nodal

REB il lI symbols index

for 1i a symptr ; i ; -i)
if (copare(sybollil.sym~nodenode) a- TRUE)

return i;
return ERROR
)

/eeeoeeeeeoee, ~,eeoa, Ha, oea, e, eea aeeeae, oaooeaeoeoeee*e/

/5 place 'l
/4 Place a new item in the symbol table. Return the new 4
I. symbol table index. 0i
I, 41
1l44a5440e44444444444444444404049444404454444444444444444444441444ieil

int place(node,type)
int nodik

typel
(

if 1sye.ptr+l )p SYM1OLS) I lt limit symbol count C1
if (!serror) 

puts(OSymbol table ovflooo.);
serror a TRUE;

else(
symbol[44symjtrl.sy~nod@ a node;
symdolyemtrl.symjlevel a levell
syubollsy.ptrl.symaddr a off strl
symollsym.ptrLsy.type a type;
)

return sya.ptrl
)
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Ioooo0*64*oo4soao-*** * ,o***C*4,CIe*mt.,* mm*eeme*o,,e**,,,,/
I, ,1

/0 error 0/
J# Mark the specified node Pith an error and output the /
/0 supplied error message. Return TRUE when all error #/
/4 markers have been used. Vi

iut error(node,str)
jut nodel /# node in error Vl
char istr; /f error message string V/

(
RES i; /* marker index cl

I* find the first open error marker or reuse one Pith the same node c/
for (i a 5;

i (a 8 & src info.f-mark~i] H& src-info.f.mark(i] !a node;

putsI'EROR MRI ER O)l /* message #/
putchar(l+'O')l puts(': ');
puts(str); puts(O.0);
if (src info.foark(i3)

clrmsark(node); /I clear any previous mark C/
set flag(rc~info.f~mark(i] nodeNARK); It set error marker '1
if (i >- 9)

: (
puts('Error limit exceeded.*);
return TRUE;

O4errors!
return FALSE;

)
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/ ti*0445tl44t4**tiitflti**0*5i44ttitlt1441ilttilt*tttt*itltIttlaeet/

/* node-type a-
Is Return node type of the node specified. I/
I, t
lHeff*EeC**e*eSO5*li~aCle4,efltai54CCei,4,s44C*54ii~eseel/

int node~type(node)
ant node;

(

REG ii /# types index it
aot Ic;

loc s.ptr(link(link(prod(node)))); /# string location is in table C1
for (i a 0; typesil; ++i)

if (types[i] an Joc)
return I;

return ERROR; /# not found ej

IV

Is fll.types #i
/s Fill types array with string locations in syntax Cl
lC description corresponding to strings in argument. Ct

filltypes()

register char #s;

ant i; / types index .l

for (i a 0; typescill ++1) ( IC stop at 0 entry .l
a a sptr(link(4)); /§ location of first string Q1
ieputs(typostil); make this into a non comment to find errorset

I0 in the types array. #1
fflushlistdoet);

while (strcmp(s,typ"Eil)) ( 1 while strings not equal #/
if Ifs - OxFFFF) I# error if no ore In SDF a/

putst'Type-fill error: ')1
puts(typesti])1

i exitO;l
WI

while (ft#s) I /# find next SOF string #l
)

typesci) • si IC type is loc of SDF string #l
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linclude 'adal.h

I old ident(i l) VI

/IeeHOee*eoeeeC*eeeooeee*Cmeneeeaeeooeooesloaeeeaeoooeele

1st oldlident(node)
int nodel

{

RES if

if ( flnd(node)) !a ERROR)
return if

if (error (node,'undeclared identifier'))
return ERROR;

return place(node,TYPEVAR);
)

/############0C#CC####C#CI#C########C##C################C#########e#I

i new.ident(ifierl f/
/# Undeclared identifier search. Return ERROR if the V1
is identifier is found in the syebol table at the current V/
/# level, otherwise enter it as a new symbol and return VI
/# the symbol table index. #/

1nt newjdent(node)
nt node;

RES if / symbol table index 4/

/# must not be at same level Vl
if ((i n find(node)) !a ERROR I& symbolti].symeolvtl - level)
if (error(node,'identifier already declared'))

return ERRORI
return place(node,O); /# place new symbol l

Isl

/# inte§er1

let integer(node)
int node;

return number (node, 10)! /0 base 10 number t/
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/0 n exp e/

lnt neip(node)
lnt node;

return exp(son(node)); /( <expression) V/
)

/444440445044i444544440HIItttf@5501tfftelI*OfltltttlbtitO*04ttl/

/, '/

/i d ec/nue

int decnum(node)
lnt nodel

(

return integer (son (node));
)

/ Iee490I*l4ff4*Sfttttitlfltl5ts*0514445t45t5954*tt44t54514ltt54tt I

/# mul.op 4/

int ml op(node)
int node

(

if (!son(node))
if (error(nodenoson))

return ERRORI
else
return .WLl

switch (node.type(son (node)) )
({

canIL.: /# m#§

return .HUM
case DIV.: I '

return DY;
cass RN.: I0 'REM el

return .RN
case NOD.: /# 'NOD' #/

return .001
)

)

l i i~~~~ I .. .,,..
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I' primary C

jut priaary(node)
int nodel

RES next;
int i;

if ('next a son(node)))
if (error(node,noson))

return ERROR;
else
qen(..LIT,i,O,nod#);

return TYPEINT;

suitch (nodoetype(next))
cise DEC NUN: I.(decimal-number>
if M( a dec-num(nezt)) as ERROR)

return ERROR;
g#nM.IlTqiO,next); I load literal d
return TYPE -INT;

case MANE: I(name) 5
if MC a name(noxt)) " ERROR)

return ERROR;
if Itsmo~J~yjas& TYPEVAR)) I.VAR or CON9T 5

if (error (nexit, Iust he constant or variable name'))
return ERNA;

@I" (
gen (.LlT,i,O,neat);
return TYPE INT;

9ee(LOD,level-syubolC; 2.SYmjevel,YmbolliJ-symaiddr,nemt);
return symbolil.sys type; / load variable #/

cane NEIP.: /# (nested-eap) C
return neasp(oueit

CA" cHAILIT.
if (Iim char lit(nmt)) - ERROR)

return EmOil
so (_LlT,l,O,*@rnt)
return TYPE OHW;

cost DOEAYLUE:
if (Ii a heel vol (nest)) a.ERROR)

return EWMOR
gen ILIT,i,O,met);
return TYPE.ML

canl F.CA. :
return fmac call (nest);
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/0 character literalV

int char lit(node)
int node;

int nostl

nuxt a son(node);
if (chkjflaq(next,OPEN))
if (error(nest,'character needed'))
return ERROR;

else
return 01

aleo
return valueinext)l

/# booloan value 4

int bool val (nods)
int node;

int neOt

if (!(nest a son(nodei)
if (urrar(next,no n)

return ERRUNI

return TRJEl
if (nWdetyp#(nest) muTRUE-)

return TRUE;

return FALSE
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finclude *adal.h'

/5 relap V/

int fit op(node)
int node;

if (!son(node))
if (error (node,nosan))
return ERRGRI

else
return _EQU;

switch (nodoetypelson(nade)))
case Eau-: /4* #/

return _EQU;
case MEG_: /# */,a V/

return -KEG;
case LES-: Vs(*

return -LES;
case LED /# iNso #/

return -LED;
canSRT : /#> S) -#

return _SRT;
case BED : /# *)as #/

return -6ED;

/# addop V/
/# 5

int addop(nade)
lot node;

if (!son(node))
if lorror(node,noson))

return ERRORI

return _ADD;
switch (nodetype(son(node)))

came PLUS :# I,+*

return ADD;
case MINUS : /# ~5

return juD;
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/ff*j444O44O44E444C i*44EHEfa**EE#aIIIff*#*I*****EItaaI**a aaoaJt-/

I, sl

is fact(or)s 0l

int facts(node)
int node;

(

RES next;
int op, /0 multiply operator Vi

type;

if (lop a aul~op(next z son(node))) an ERROR) /i <sulop) I/
return ERROR;

if ((type m factor(riqht(next))) s ERROR) / (factor> fi
return ERRORI

if (type !m TYPEJNT)
(

error(next,'inteqer type expected');

return ERROR;
)

qen(op,O,O,next); ia ultiply operation '1
return type;

/ rel(ation)al

int relal(node)

tnt node;
(

RES next;

ant op, /0 relational operators 5/

typel

if ((op a relaop(ntxt * son(node))) ," ERROR) i# (relop) 5/

return ERROR,
if ((type a s.exp(rlght(next))) . ERROR) is (sliple.exp> 5/

return ERROR;
qen(opOOnext)1 / relational operation 5/

return type;
1
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IC terms VI

lot tores(node)
ifit node;

RES next;
int Opp /# adding operator #/

type;

if ((op a addap(next a son(node))) an ERROR) /# (addaop) #/
return ERROR;

if ((ypo a ters(rightinext))) urn ERROR) /# <term> #/
return ERROR;

if (type !a TYPEINT)

orrarinext,finteqer type expected') I
return ERROR;

qen(opq,,,next); /# adding operation #/
return type;

/# term VI

jot tere(node)
int node;

RES next,ltype,rtypel

if (1ltype a factor(next m son(node)) * ERROR) IC (factor> VI
return ERRORI

while (!chkflaq9(nezt,RTHOST)) I# (<actors)) VI
if ('chkflaq(newt a rightinext),OPEN)
if ((rtype a facts(nexti) asn ERROR)

return ERROR;
else if ((Itype !s TYPE -INT) 1I

(rtype !a TYPEINT))

error(node,'type mismatch. operation not defined');
return ERROR;

return Itypel
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f factor V/

it factor (nods)
int nod.;

int next;

if (!(next a soninade)))
if (errorinodo~noson))

return ERROR;
else

qen(_LIT,O,O,nod#);
return TYPE INT;

evitch (nodetypeinext))

cast EIP PRIMARY
return- exppri~ t 7

case ADS PRIMARY
return- abs 7rmnx)

case NOT PRIMARY:
return notjpria(next);
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linclude 'adal.h*

/II4*ill0a4t4iI*iltII4eIIittIIIilIIIIItI44*41444I4Ie4GIZi4tI4tII/

o u.op f/

j eeene~eeII~eeeeI*ISISeI0SI*e4es4eIIIIIIIIIIe~IeeIaeOe~eflt

int uaop(node)
int nodal

if I!son(node))
if (error(node,noson))
return ERROR;

else
return .NOOPI

switch (nodetype(son(node)))
case PLUS. /C '/

return NOOP;
case MINUS- I: '- al

return .NES;
)

}

I/esae~e~CeeateeeaeeeaeeeCeeeu eaCCeeee~eoteooeeCCCCC/

I or rel (ation) el

/4l*ttttlttte HCCttlteelte 4I*etttltttttt elttttet*teeteetttt*it

int 'orrel (node)
ant nodl

int type;
if ((type a relation(sonioode))) ,- ERROR) IC (relation) o/

return ERRORt
if (type !a TYPEJOOL)

€

error (son (node) ,bool ep) I
return ERRORI)

q@n(.OR,0OOnodev) IC or operation #/

return type;
)
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/e4eelee4444e4*ee*eeieeeeeoeleeeeoieee449ee*4a44~eel/"- clauseV

iet isclausa(node)
int nodel

(

return exp(eon(node)); /# (expreesion) a/

}V/444ffl"f4i~o44444O44C4OO*@4@*4444flef44f44etle~eeee*4leee|/

/A and rel(ation) 4/

int and rel (nods)
int nodal

int type;

if ((type a relation(son(node))) a. ERROR) I( relation) Cl

return ERRORI
if (type ! TYPE.BOOL)

error (son (node), bool ep) I
return ERRORI

gen(.ANO,0,node)l /# and operation a/
return typel
)

/eCCoCCeCCeeCCCCo4CCCCCCCCCCCCICCCCCCCCCC4C4CCCCCCOCCCCCCCCCCCCCCCC,/

/ and.then rel (ation) o/

int and-then.rel (node)
int nodel

int itypo

if ((Itype a relation(son(nodeo) ,r ERROR) IC (relation) Cl
return ERRORI

If (Itype !a TYPE.100L)
if (error(&on(node),bool~eup))
return ERROR)

return Itypet;
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Ii4*CCHCCC,4#*i#444*f*4t**14444fl44*46t44*4*444II4*###I*#4*#*t#e#

I. #/

lot or-else-rel (node)
jot node;

jot Itype;

if ((Itype - relationlioninode))) an ERROR) /# (relation) 0/
return ERROR;

if (Itype !a IYPE)BOOL)
if (error(son(node),booletxp)1
return ERRORI

return Itype;

/ 4 # /

ant xor-rel (node)
jot node;

iot Itypel

if ((itype a relatlaonioninode))) muERROR) /# (relation) #/
return ERROR;

if (ltype !a TYPEBOOL)
if (error (son (ode),bool tip))
return ERROR)

qmn(.1OR00OOnodv); /# sar operation #/
return Itypel

/# tel (ation).part a

it reljartlnode)
lot nodei

return relallgo(nodeM) /# (relational) #1
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int s expinode)
int nod.;

RES nest;
int optI unary op-code C

typo;

op M N9OUP;
if (node~type(next a on(nods)) .UOP_)

if ('chkfla94next,OPEN))
if ((op o uop(next)) as ERROR) I. Cunary~oprator)I #1

return ERROR;
next ariqht(next)I

if ((type a ters(next)) an ERROR) IC(term) #/
return ERROR;

if ((ype !a TYPEINT) &I
(op !a -MO))

error (next, int_#xp)1
return ERROR)

9" teop,O0,O00so (node))I unary operation V1
while (!chkflaq(noxt,RTMOST)

if (type !a TYPE.INT)
if (error(nvxt,int_*xp))
return ERRORI

if (!chk~flag(next a rightfnext),OPEN1))
if ((type a teres(next)) amERROR) IC((ers) 1

return ERROR;

return typol
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int iclause (nods)
int model

return w-clause(son(nodeM ~ /# <*hile clause> #/

A0 elsojart #/

int else part (model
int node;

return svqof.tts(on(node)); I (seqa0f~tsts> #/
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finclude Oadal.he

#I s If _part VI

int vlsiljartinode)
jut nodel

RES next;
int labell, /# label address storage aV

typal

if ((ype a exp(next *son(nodei)) *uERROR) (.expression> VI
return ERROR;

if (type !a TYPEIUOLJ
if (@tror(next,booluixp))
return ERROR;

lahell a gen(.3PC,O,O,O); I jump to next else VI
if 1seqofstts(riqhnat)) **ERROR) /t <seqof ststs) C
return ERROR;

return label!)
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IC andcosp I

int and coapinode)
int nodel

RES nest,ltype;

if ((Itype a relationinext s on(node))Ma ERROR) I( relation> #1
return ERROR;

if (Itype !x TYPEBOOL)
if (error(son(node) ,boolevxp))
return ERRORP

while (!chkfl&q(nvxt,RTMOST) I ((and-rel>)) C
if (!chk~flaq(next a riqht(next),OPEN))
if ((Itype a and-rel(next)) *uERROR)

return ERROR;
return Itype;

I rcoop #/

iot orjospioode)
lot node;

RES neitoltype;

if (iltype x relationinext a son(node))) amERROR) IC (relation) VI
return ERROR;

if Iltype !a TYPEDOCOL)
if (error(man(nodv),boolexp))
return ERROR;

vhile (!chkfl&g1next,RTMOST)) I# ((or rel)) #/
if ('chkjflag(next a rlqht(next),OPE))
if ((Itype a or rel (newt)) -ERROR)

return ERROI
return Itypel
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andthencoep

int and-then-coap (node)
int node;

RES next,Itype,chain,label;

if ((Itype s relationlnext a son(node))) maERROR) It (relation> #/
return ERROR

if (itype !@ TYPEDBOOL)
if (#rror(sonnode),booletxp))

return ERROR;
chain a label - qen(_LAB,O,O,next);
while (!chk~flaq1next,RTMOST)) Ui' nd-then-rel>) t
if (!chkjlaqtnext a riqht(ntxt),OPEN))

label a code~labell.copl a qen(_ANDTHEN,,,next);
if ((type - and-then-rel (next)) maERROR)
return ERROR)

do

label a code(chainl-copi;
fix (chaint);

while (chain WWablI

return Itype;
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int or elsocop(nade)
int nods;

RES next,ltype,chain,labell

if (11type a relationinext a son(nade)) a ERROR) it <relation> #/
return ERROR;
if (Itype !a TYPEBOCt)
if (error~son(nodv),boolexp))

return ERROR;
chain a label a qen(_LAD,O,O,nvxt);
while C'chkflaq(next,RTMOST)1 /# M(r-elso-rel)) 4

if (!chkflaq(next a riqht(nvxt)1,OPEN)J

label a codellabell.c.opl 9" q(RELSE,,,next);
if M(type x ore@ls#_rel(next)) a ERROR)
return ERROR;

do

label v code~chaini.copi
fix (chain);

while Ichain 'label)

return ltypel
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int xor compinode)
int node;

REU next,ltypel

if M(type a relationinext *soninode))) *uERROR) 1# (relation) #/
return ERRORI

if (Itype !a TYPEBOOL)
if 1errorfson(nade) ,baoleaxp))
return ERRURI

while ('chkjflag(next,RTMOST) I'(xorjrel)) #/
if (!chk~flag(next a riqht.(next),OPEN))
if ((Itype a xor rel(neit)) muERROR)

return ERROR!I
return Itypet

/S relation #

iot relation(node)
tnt nodel

REG next,ltype,rtypel

if (1ltype a setxp(next a son(node))) unERROR) I# (seaxprehsion) #1
return ERROR;

if (!chkjflaq(nevt,RTNOST) && !chkflaqinext a riqht(next),OPEN))

if ((rtype a reljwatinext)) am ERROR) IC (relationjart>] '

return ERRORI
if (Itype !a rtype)

if (error(net,ltypes must match'))
return EMORI

else
return TYPELDO0tJ

E return Itype;
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int name(nodo)
int nods;

return old ident(son(node)); /# (old) <identifier> V/

A4 loop-stat #/

/######4 #########4##4########*#*###*/

int loopstmt (node)
mnt node;

RES next;
int labelI,label21 /# label address storage V/

labell a gen(_LAB,O,O,O); /* start of loop Vl
labal2 a 1
if lnodetypeinext a son(node)) asn I-CLAUSE-)

if ('chkjlaq(next,OPEN)) (
if (i -clause(next) an ERROR) !# M(teration clause>] #/

return ERRORI
label2 a qen(_PC,,O,0); /4jump to exit loop #/

next s riqht(next);

if (seq~o4_stmts(nvxt) xx ERROR) /4(seqof stats> V/
return ERROR;

gen(J"Polabell,o,); /# jump to loop start V/
if 041be2 !a-1
fix(lab*12)1 /# fix jump to exit loop C

return SUCCESS;
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it if stt (nde

int nodal

REG next;
int lab@1l,Iabe2,chain, /* label address storage '

typal

if ((ype a exp(next a son(node)) M ERROR) /f (expression)
return ERROR!

if (type !a TYPEBOOL)
if (error(next,bool tsp))
return ERROR;

labell a qenyJPC,O,O,O); 1' jump to else 4/
if (seqofstmts(next a right(next)) an ERROR) /# (seqofstots) #/
return ERROR;

chain a label2 a qen(_JMP,O,O,O); /4jump past if-stat 4

while (!chkflaq(neut,RTHOST) it node type(riqht(next)) an ELSIF-P)
if ('chk~flaq(next a right(next),OPEN)) { /# (<elsif part>)

fixilibell); / fix jump to else
if ((abel) v elsii part(next)) - ERROR)

return ERROR;
/# chain locations of jusp-past-if stint instructions 4

label2 s code~label23.copl a qen(_JMP,O,O,O);

fix(labell);
if ('chk.,fla9(next,RTM0ST)
if I!chkflaq(next a right(next),OPEN))
if 11elsejaftinext) ma ERROR) /# 1(uistepart>] 4

return ERROR;
do (
label2 a cade(chainJ.copl;
fix(chain); /4 fix jumps-past-if-stmt 4

while (chain 2 label2l;
return SUCCESS;
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Binclude 'adal.h"

/C proccall ,/
/# j

jnt proc call(node)
int node;

C

RES next;
int Sye; /# symbol table index fl

if ((sys a name(next a son(node))) an ERROR) IC (nam) I
return ERROR;

if (symbol~syv],symflaqs && TYPE.PROM / oust be procedure name '1
if (error(next,'must be procedure name'))
return ERRORI

else
return SUCCESS;

qeni.CALtlevel-syebol(syl.syilvel,syeboltsyl].sylmaddr,next);

return SUCCESS;
}

litCC lCCCCCCilCCCCl CCCOC*CCOCCCtCCti CCCClCClllllllCCClCClCCie l

it ident(14ier)s e/
It ,1

I*CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC*CCCCCCCCCCCCCCCCCCCCCCC*

int idents(node)
int nodel

return new.ldent(son(nodM)); I (new) (ident.:!> Vi
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/# a(slignmont))tmat #/l

iflt a-stot(node)
jot node;

RES next;
lot syl, /# symbol table index 'El

1 type, rtypol

if ((sym a namelnext a son(node)) * ERROR) /# <name) #/l
return ERROR;

if M~symbol[%ymJ.sysmilaqs && TYPEVA4RJI /4 oust be VAR #/l
if (errorfnext,*must be variable name*))
return ERROR;

if (!(syabal~symi.symejlaqs && TVPE-CONST)
if (symbol~syel.syo..flaqs I& TYPEINIT)
if (error(next,gconstant initialization allowed only once*))

return ERROR;
Itype a symbal~syel.symtypel
if firtype a expiright(nextM) as ERROR) It <expression) l

return ERROR;
if (Itype !a rtype)
if (error(nade,'types oust match'))
return ERROR;

qen(.9T0,level-symbollsyul.syejlevel ,syabol(syml.sysmaddr,son(node))I
return SUCCESS;
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int expinode)
int node;

RES next;

if ('next a son(node)))
if (error (node, noson))

return ERROR;
else

return SUCCESS;
switch (node typetnext))
case RELATION-:

return relation(next); (' relation) '
case ANDCORP)
return andcoep(next); Is(andcomp) Q/

case OR CORP)
return orcomp(nvxt)I / orcomp> 0/

cast NDTHEN-COP:
return andthenco"p(next); IC andjhencoep) V/

case ON ELSE CONP:
return or else caap(nvxt11 IC <relse0comp> #1

case XR.COmP
return ior cuap(nuat)I IC or coop> #/
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IC sub (type)ind I icat ion) C

lot subjindinode)
int nodes

int next,sye;

if (!next a sonifnodeMI
if (error(node,nosoi))

return ERROR;
else

return TYPEINT;

switch (nodetypt(next))

case INTEGER-:
return TYPEINT;

case DOOLEAN:
return TYPEBOOt;

cast CHAR :
return TYPE CHARI

case [DENT:
sye a old ident(next);
if ('(symbollsya].syeflaqs U& TYPETYPE))
if (error(next,0type name expected'))

return ERROR;
else
return TYPE INT;

else
return symbol tmyel.sys type;
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ins st(node)stt

int noda;

REG next;

if ('next a son(node))
if (error(node,noson))

return ERRORI
else

return SUCCESS;
switch (nodetype(next))
case A STNT

return a -stat(next); Is<asanuent stat> #/
cast P CALL.
return proc call(next); IC(proc call> A/

Case IF STMT:
return if-sttinext); I <if stat> S

case LP-STNT-:
return loopstat(next); I# (loops$tot> #I

cast RET.STMT-
return ret stat (next);

case CONNENT
case NULLSTiT:

break;

1# initial #/
/# 5

int initial (node)
int node;

C
return exp(so(node)) I (expression) #I
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/# obj (act) decl

int obj dec (node)
jut node;

REB nest;
iut $type, /# type of variables declared V/

type? /f symbol table flags Vl
strt; /# first symbol table entry #I

strt a symjptr + 11
if (14listinext a son(node)) muERROR) (ie<d list) C

return ERROR;
type Is TYPEVYAR;
if (node~type~next s riqht(next)) as CON9T-) 184 constautl'l
if ('chkjflaginext,DPEN))

type Is TYPE-CONST;
next - rightinext);

if ((stype a obijypelnext)) zo ERROR) Ia obcttype) Vl
return ERROR;

if V chkJ1iq (next, RThDT) M& !chkflaqinvot *riqhtln~xt),OPEM))
if (jnitial(next) an ERROR) 1*C(lnitlal>1 C

return ERROR;
else

type is TYPE-JNIT;

g"n(_L1T,,q0,nvxtI; / no initialization, got 0 0

symialcstrtlsys type a stype; lo st each symbol type C
symbollstrtlsysflaqs in type; /f set flags for symbol #/
while (+#strt (a sys~ptrl (

symbol~strt].syemtypt a stype;
syetol~strtl.syejflags to type;
qen(_CPY,O,O,syebol~strtl.sys node); /# copy initial for each #/

return SUCCESS;
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int seqofstts(node)
int nadii

RES neut;

if (stotinest a son(nodo)) *~ERROR) I'($tot) 5
return ERRORI

while (!chkflg(n t,RTOST)) IC(<stat)) 4
if (!chkflag(next a riqht(next),OEN)
if (stot(next) uno ERROR)

return ERROR;

return SUCCESS;

/0 progiraa)_complonent) Vl

int proqcoap(node)
int node;

int next;

if (!(next a son(node)))
if (error(nado,nosan))

return ERROR;

return SUCCESS;
switch (node~type(next))

cast P BODY-
return proc body(next);

case F-8ODY
return funcbody (next);
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it decl(node)
int node;

return obj dud (son (node));

/0 procuspec:e

int procespec (node)
int node)

RES Sys; / symbol table index 0

if ((Sys a now -dent(son(node))) **ERROR) A0 new (identifier) 4

return ERROR)
symboltsys).syemjype in TYPEPROC; I.set symbol type 0

return sys)

A

A0 coip(ilation-unlt 0

cosp.unit (node)
int node;

int next;

if ('next s son(nade)))
if (error (node, nosoa)

return ERROR)
@ls#

return SUCCESS)
switch Inodetype(next))

cast P Baby:
return procbody~next)I

cast F BODY :
return funcbodyinest);
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IS procbody '

lot proc.,body (nods)
jot nodel

RES next; I'thru sibling list 5
int label, Islabel resolution s

cnt, ISnumber of variables declared #1
Sys? / symbol entry I of proc name VI
i,

if (nodetype(nsxt *son(nads)) PROS NOR)
next a right(next);

if ((mys a procspec(next)) urn ERROR) IS<procSpec) #/
return ERROR;

symbollsyel.sysaddr a qgn(_LAD,O,O,O); I proc entry address 5
"+level; /5bump lexical level #1
offset * 0I i zero level offset 0/
Mhile (nodetypelnext z rightinext)) no DECL-) /S ((dcl>) VI
if (!chkhflaq(next,OPEN))
if (dscl(next) an ERROR)

return ERROR;
cot a offset;
offset *0;
label * e(_JNP,O,O,OJ; /# jump around procedures VI
while (nado~type(next) an P 'CORP)C / ((proqraecompoont} #/
if (!chkflaq(next,OPEN))
if (proqcomp(nsxt) uno ERROR)
return ERROR;

next a riqht(nst);

flxilabol); / fix jump around procedures #I
bodytyps a TYKPROC;
ret.1st a 01
if Csej4_4statsiftxt) -r ERROR) /s(504qostots> #/

return ERROR;
if (!chkflaq(nevt,RTNO0T) it !chkjflaq(nsvt *rightinext),OPEN)
if M a ld ent(next)) arn ERROR) (I. ~dsntifi~r>1 e

return ERROI
if U !a Ssm)
if (error(next,ffprcedure id's do not catch$))

return ERROR; IS must me first identifier V/
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if (ret 1st)

do
{

i a codelret Istl.c~opl;
fix(ret-1st);
) while(ret.Ist a i;

gef(.DCS,cnt,O0node); 4 remove variable stack space C1
--levell /# restore lexical level /
while (syubol(sy@_ptrlsylaevel ) level) /# peel symbol table #/
symbol(syeptr-.sys flags O f9 /4 clear flags field, #/

/4 leave procedure name. a/
gn(.RET,O,O,node); /4 return from procedure a/
return SUCCESS

}
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#include 'adal.h'

I' goal VI
IL(compilation) is AMA language grammar goal symbol. #I

int goal (node)
iot node;

n~oson a 'incomplett program fragment';
boo! eap a 'boolean type expected";
int-exp a $integer type expectedo;

types(lUL I a '80;
typtsCPLUS] - 20
typeuCMIMUS -I 0-9;
types(D'ly - U *s
types(NEG)3 a 'I.';
typesCLES) '( 1;
typesCLEOlj a 'a*;

typmmLEfltj a gas;
typmsCSRT)1 2 ') ';
types(SEf_3 * )e
typosEA-SIM.1 g asignmenktmtt')
typesCAND C W ]a 'and-cowp';
typesCCONSTJ1 * constant';
types(DEC-NJII a 'decimal -number';
typesiFDECLj1 a 'decl';
typesCELSFP) x 'elsif-jart';
types(lF-STNT]1 a lf-stete;
typet(ICLAUSE-lx 'iteration clause*;
typesCLP-STNT1 a 'loop-stet';
typesCAE.j a 'name,;
types(N.EIPJ ) 'nemtmdexp';
types[OR..CONP.] a 'or-compl
typesCP-CALLJ1 z 'proc-call'I
typemCPCONPJ 0 'program component';
typeICRELATION-I 'relation';
tyPISM[OP-J a *unaryoperator';
typesCRENl) a 'rmm'J
typeCNDODJ 8 'mod';
typeICANDJNHENCOHP a 'and-thewicap';
typiscafi ELSE_ coi~l $ or els@.coep*
typeslONlCOMPJ1 a I Ior-cosp'
types(INTE6ERj1 $integer,;
types(MMOEANJ * 'boolean'*;
typestcNWlLlT~j e char-lit';
typesCIDENT)1 lidentifier';
types(TRUf) a 'true';
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types(FALSE.aJfls"
types(F-CALL)1 a 'func -ca11*
typesIF BODYJ I a funcbody*;
typosoLP)ODY.j -procbody';
typesERESTNT)l a returnststl;
typsEDOOLEAN..YALUE.] *booluan-values;

typosEXPRIMAY] a mxpjiriary*I
typos(ADSPRIMARYl a 'abs~priuary'l
typosCOT..PRIMRY) a atprimary'l
typosEXPON..PART_) aexponpart"I

typosW4HAR_) a *s'
typeu(PROCRET_) * procedurejtturn'l
typestFUNCRET)l * function-returne;
typosCCONNENTJ S comeent'l
typesCNULKSTNT.1 a onul-stotI
types(PRSHDRJ * a 'program jiader';
types[LAST..PRODJl a 0;
fill-typs();
return camp unit(san(node))j I.copilation-unit> C
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finclude 'adal.h'

/4 funcbody

int func-bodyinode)
int node;

REG next; /# thru sibling list #/
int label, /# label resolution 4/

cot, /# number of variables declared V/
Sy49 /f symbol entry # of func name V/
it

if (node -tvpe(next a soninode)) urn PROG NOR-)
next a right(next);

if ((sym a funcspec(next)) an ERROR) /# (funcspec> '
return ERROR;

symboltsyel.symaddr a gen(.LA8,O,O,O); 1# func entry address V/
"+level! /# bump lexical level #/
offset 2 0; /f zero level offset t/
%bile (nodetypt(noxt a right(nhxt)) muDECI-) /4(<decl>) V
if (!chk f liq(next,OPEN))
if (decl(next) an ERROR)

return ERROR;
cnt a offset;
offset a 0;
label a qenylMPOOO0); jump around functions 4
while (node-typetnext) a- P-CORP) /0 ((program component>) V/

if (!chk j liq(next,DPEN))
if (proqcomp(next) as ERROR)
return ERRORI

next a riqht(next);

fixolabtl); /4fix jump around functions o
body~typm TYPEJUNC / indicate working on function4l
rtttype a ymbol~symj.symtypel If indicate return type V/
ret.1st 01
if (se.o stmtsinext) an ERROR) I.<eqofstmts) *

return ERRORI
if (!chkjlaq~next,RTROST) 14 !chkflag(next a right(next),OPEN))

if MC a old ident(noxt a son(next))) as ERROR)
return ERROR;

if fi a* Ss)
if lerrorineit,'function designators do not match'))

return ERROR; /f must mu first identifier V/
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if (ret 1st) /4 check if return list exists 4/

do

i a code~ret.lstl.c.opll
fix(retlIst)}
while (retjlst a 0)

else
if (orror(node,'functions must contain a return statement*))
return ERROIR;

qen(.STO,O,-4,node); /# save return value 4/

qen(.BCS,cnt,Onod0); /f remove variable stack space Cl
--levell /# restore lexical level 4/

while (symbolsymptr].symjevel > level) /# reset symbol table 4I

--symjptr; /# leaving function name #/
gen(.RETO,O,node); /# return from function #/
return SUCCESS;

Is functionspecification 0/

iot funcspec(node)
int node;

RES nextsyml

if ((sym a desiq(next * son(node))) ,. ERROR)

return ERROR;

symbollsyel.symflags in TYPE.FUNC;
if ((symbollsymL.symtype * sub.ind(right(next))) *= ERROR)
return ERROR;

return sym;
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If function raillS

int func call (node)
int nadel

int nhxt,syml

if ((sym a old ident(next *sonlson(node)))) *uERROR)

return ERROR;
if ('(sysbol(sym.symflaqs && TYPEFUNC))

error(next,'function nase expected');
return ERROR;

qen(_LlT,O,0,node)1i create space for return t

itvalue
gen(_CAL,level-symbollsyml.symjlevel,symboltsymi.symaddr,next);
return symbol ~sym1.sysmtype;

IV

it designator m

int desig(nodel
int node;

return (new ident(san(nod.) II
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IC return-statesent #/

int ret stti node)
lot node;

RES next;

if (!next a san(node)))

error (node,noson);
return ERROR;

switch (nodetype(next))

case PROC-RET:
return pracjret(next);

case FUNC.RET-
return func rept(next);

14f##f 44*4444*#444,444O*###4*##4########CC,444 444,4444fl44*4*44**,

lot pracret(node)
mnt nodal

if lbodytype an TYPE FUNC)
if (error(node,'functions must return a value*))
return ERROR;

else
qen (LIT,0, 0, node);

rot Ist a gen(_JNP,retjlst,,node)l
return SUCCESS;
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li*44441***t44***4***i*~i****i*Hi*440* 4i**H **ii/

/* C/

/t function.return - accept a function return. C/

IC it must return the correct type. return type C/

it is stored globally in rettype. CI

int func ret(node)
int nodl

int type,next;

if (bodytype - TYPE PROC)
if (error(node,'procedures cannot return a value'))

return ERROR;

else

retjlst a gen(JHP,ret~lst,O,node);
return SUCCESS;

if ((type a exp(next m son(node))) on ERROR)
return ERROR;

if (type !a ret.type)

if (error(next,'return expression of wrong type'))
return ERROR

ret.]st a gen(.JMP,ret.]st,O,node);
return SUCCESS;

)
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linclude 'adal.h"

/eeee aeeeeeeeeeeeeeeeeeeeaeeeeeeleee/

/a exponent primary - accept a primary with an optional '/

/* exponent, if the exponent exists it must be Cl
/0 an integer and positive. a/

int exp~prim(node)
int node

(

nt typel,type2,next;

typel z primary(next a son(node));
if (nodetype(next - right(next)) !2 EXPON PART.)

return type!;
if (typel !a TYPE.INT)

if( errar(next,int~exp))
return ERROR;

if (exponjart(next) !a TYPE.INT)
if (error(next,intexp))

return ERROR;

gen(.EXP,O,O,node);
return type!;

/C exponent part - accept the exponent part of a factor C/
/C generate code to do exponentiation. Exponent /l

'/ must be of type integer. el

~~/,|~eeei4aeCC***t,CHICeCCCC4CCCeeCCCIsCCCC*eCCCCCCCHCC*C*CCII***

tnt exponjpart(node)
int node;

return primarylson(node))l

175

-J - I "



APPENDIX F

/a4040044meeaatmCItt444.49*144*4414t44444444444444441194414*4411**Ie/

/C abs primary - accept an absolute value primary. f/
/4 generate code to find the absolute value I/
/ 4of its argument. C/

jnt abs~prim(node)
ant node

{

ant nexttypel

if ((type a primary(next a son(node))) !a TYPE.INT)
if (error(nextintexp))
return ERROR;

gun(.ABS,0,0,node);

return type;

I /

/# not primary - accept a negated boolean primary. C/
/# its arguement must be a boolean expression. C/

jnt not~pri(node)
ant node;

int typenext;

if ((type a primary(next s gonnode))) !a TYPE-DO0)
if (error(next,boolexp))
return ERROR;

gen(.NOT,0,0, node)
return type;
)
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/c 00000 00 00 00 00 00000 00000 V1

/0 00 00 00 000 00 00 00 00 Vl
/f 00000 0000 00 0 00 00 00 0000 #/

I0 00 00 00 000 00 00 00 V1

/c 00000 00 00 00 00000 00000 l

I' SYNtax-Directed Editor (c) Copyright December 1992 V/
IC CAPT. Scott Edward Ferguson, USAF, AFIT SCS-82D l

/4 Modified October 1963 Vl
14 CAPT. Michael L. McCracken, USAF, AFIT SCS-83D Vl

Ic INTERP.C l

/c SYNDE system "dynamic display' interpreter. The interpreter Vl

Ic itself is language independent, using a stack pseudo-machine, V1
IC but must be linked with language dependent compiler routines. Vt

linclude 'synde.h' IC system global information structures V1

*include 'types.h' I production type definitions #1

linclude 'code.h" i pseudo-code structures Cl

finclude (curses.h)

eutern I source file information C1

struct file-info srcinfo; 14 in AST.C Vl

extern i terminal display information a
struct terminfo tdf datal I in DISPLAY.C f/

extern
struct codeword codel i pseudo-code memory #/

extern / In EIECUTE.C cl
int inst ptr, I instruction pointer V

stk.ptr, I stack pointer Cl
estack; / stack space Cl

char #codes(.MOO, IC instruction names l
*types(LAST.PO0.),
enoson,fintexp, ebool.exp,
str(NIDE~i IC display line to build V

int chi I command input character V1
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mt ain 5
IS Entry paint and driver for interpreter. '

sain(argc,argv)
int arqc; I# input argument count 4
char *arqvCJ; I# input argument ptrs '

putsVINTERPRETER IL/1l/83 )
if Cargc ( 2) ( /I prepare source file name '

puts('Unspecified source file. ');
exit 0;

/# initialize *
if (ajinit(arqvll) an ERROR 1:s-nit(src info.f lanq) a- ERROR)

exit 0;

if (coapileMl(I check generated code for errors C
puts('Errors in source program. Continue with interpreter?*);
if (toupper(getcharfl)) a Y')

interpreto; ICinterpret oseudo-code any way .

else
interpretol I no errors, interpret pseudo-code C

if (ayNrap() a2 ERROR)
exit 0;

swrap0;

if (irc info.f edit)
exec (;synde','synde',argvllU,2);
puts('Cannot access SYNDE. ;
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It interpret *
/# Interpret the generated code with dynamic display of *

program AST tree. Allow user interaction to execute, Cl
/, single-step and terminate execution. 41
/50es**a*eee**~eee*o**|iieiiieef**eiiiie*fleeieC~eieele~aeee/

interpret ()
(

int focus; /0 dislay image focus i
BOOL contl /# continue execution C/

codes(J)PI 'J '; / instruction names /

codes(CPYI , 'CPY';
codes[.STO , 'STO';
codesl CALI a 'CAL;
codes(.JPC] • 'JPC;
codes(.EOU] 'EUN;
codes( NEO] s 'NEO';
codes(.LES] a 'LES';
codes(LEO] • 'LEG';
codestSRT] a 'RT';
codes(SEG) • 'BE';
codes(.NES) 'NE';
codes( ADD] - 'ADD';

codes(SUB] a 'SUB';
codes(.UU * ', @"';
codes( DIV] a 'IV'

codes(LIT] a 'LIT'
codest.LOD] a 'LaD';
codes(.RETI a 'RET';

codes(AND] a 'AND';
codes( OR] a 'OR@;
codesc.NOTJ a 'NOT';

codes(DCS) • 'DCS';
codes( ROD] a 'MOD';
codes(.RENI * 'REH';

codes(.AND.THEN]- 'AND.THEN';
codes(.-ELSE] a 'OR.ELSE';
codnC.XOR] 'XOR';
codes[.ADS] 'ABS'I
codes(.EXPI a 'EXP';
codes(.NW 1 @ 'NOOP';
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system C'stty cbreak');
system (Ostty -echo,);

if (d aniti) an ERROR H i-init() am ERROR 11 enit() ERROR)
exit ()

focus a NIL;
ch a 01
cant m TRUE;
while (cent){

if (focus a code~instjptr3.c node)
window(0, focus, TRUE);

do ref rushl) I
show stack 0;
show-inst 0;
if (ch !a ICV)

messaqe(lSinqle-step, Continue, Restart or Exit?');
ch z toupper(keyino);
message(");

swlitch (ch)
call 'C': *essaqe(sa);
cast
caset9'

if (execute() arn ERROR)

sessaqet'End of valid proqrat.4)1

ch a 0;

else
break;

case 'R':
restart 0 ; break;

case 'E':
cant *FALSE;

1wap o;
eywap0);

lySt"u05tty Kha')I
syste('stty -cbreak');
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It show-stack I
it Display a portion of the top of stack on the screen. a,

show-stack (
C

RUB iJ

strcpyistr, 'Staci ')I
for ft a stk-ptr - Ifi >a 0 U& strImnistr) tdfdata.chars; --i)

catnueistr, stackli 1);
strcat(str,G ');

dspIine(str,tdfdet&.Iines 3)

/# show inst a
/# Display the next instruction to be executed on the Vi

/5 screen.

show- inst 0)

RES i;

strcpy(str,ONext instruction @')I
catnun(str,ins,otr);
strcat(str,a: )
if (Ii a cod#1instptr].copcod#) > 0) C

strcat~str,codesi); if instruction mneonic *

catnua(str,cod(instptr.copl); /# operand I C
strcat(str,',*!,
catnua(str,codtEinst~ptrl.cop?)1 It operand 2 '

else
strcat lstr,OINVALIDO)

dspIinvCstr,tdfdata.lines - 2);
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IS catnum 5
/4 Concatenate the ASCII representation of a signed number #1
IS to the end of the given string, 4/
jae#144444144444f44144444444f444i444044444444444444titt44141*t444s4*4*44

catnue(string,vai)

char #string;
ant val;

char s[731 /# temporary string #/

RES ii /# string index E/

if (val < Of (
strcat(string,'-'); / negative value #/

val a -vail

sI 6 0; /# generate characters in #/

do ( a reverse order #/

p hile IvaJ Val 10l)1

strcat(string Wi]); /4 concatenate number string C1

I

182



ii 00000 00 00 00 00 00000 00000..I

if 00 00 00 000 00 00 00 00 4

/# 00000 0000 00 0 00 00 00 0000 4

If 00 00 00 000 00 00 00 0

Is 00000 00 00 00 00000 00000 4/
/0 O0 O 000 O 0 O /

/4 SYNtax-Directed Editor (c) Copyright December 1992 f/
/ CAPT. Scott Edward Ferguson, USAF, AFIT GCS-82D #/

It Nodified October 1963 V/
/# CAPT. Nichael L. McCracken, USAF, AFIT SCS-83D 4/

it EXECUTE.C 4/

i* SYNDE system pseudo-machine emulator. Stack organization: 0/

/4 ... (- stack pointer I
is top of stack I work spice I 9/
/a ... 4/

/a I local variables I '/

/,L static link I (- base pointer */
if ( dynamic link 1 *1
/# bottom of stack I return address I 0/
I, ... 0/

/*40004400i04sts, o|eteeiiteteteeme40eeee0teaelahl44s404i4440s/

linclude 'synde.h' /# system global information structures /

linclude 'code.h' / pseudo-oachine structures /

extern

struct codewuord *code; / instruction space V!

define STACK 100 /4 stack size V

int instptr, /4 program instruction pointer 41

basejptr, /0 base pointer register f/

stk.ptr, /i stack pointer register #1

estack; /4 machine stack 41

ME183



APPENDIX F

I# einit *
/f Initialize execution emulator. C/

ant e initf)

if (M(stack a malloc(STACKI2))) /0 allocate stack space #/

return ERROR;
restarto; /# set processor at beqinning #/
I

/# restart #/
/c Set the execution eulator to resume at proqras start. */
Ic 'I

restart()

stkptr a inst ptr 0 0; /c clear stack, inst pointer *I
push(O); / return loc for function ci
pushi-l); /# 'progri end" return addr ci
push(O); /# initial dynamic link t/
baseptr • stkjptrl /# base pointer to static link */
push(O); /# initial static link C/
return SUCCESS;
I

it execute cl
/# Execute the next machine instruction. Return ERROR 5/

/ upon reaching end of program or invalid instruction. V/

nt execute()
(

register
struct code word #instregi /a pointer to current inst I/
int ivjlkqll

instreq a 1code(instptr4+]; I fetch next instruction V

switch (instreq-)c.opcode* /4 decode instruction c/

case .J"P:
instptr * instreq-)c~opl; break;
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cast -Cpy:
pushipush(popM) I breaki

* case 9ST0
stack~ba~einstreq-)c.o91) + I + instreq-)c~op21 apopM

breaki

case CAL:
pasI(nstjptr) I save return address VI
push(has@_ptr) / dynauic link 0/
pus(bs1instreg->copl))I I static link Ql
basejtr a stkjtr - 11
instjptr a instjrq-)cop2; ICvector ta routine Vl
break;

cast JPC:

lnst..ptr m instrq->cop1;
'I break;

cast *Wi:
pusbipopo - pop0;j break;

cast AM0
4 push(popt) !a pop0); breaki

* case LES:
i a popO;

poaO;
push(j (1
break;

case LEO:
I a puplW

izpapO;
poshlj (m 0);
break;

cast -MT:
I -pop')
j *o 0 ;
poshij ) D)1
breaki

case AEG:
i a popO;
J a popO;
pusli~j )a0
breaki
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push(-pop4ll break;

case -ADD:
push(popl) + popOll break;

cane BUB:

*popO;
pushij-0)
break;

came JIM.:
ptshipap() # papo)I break;

case -ply:

push(pop() / D); break;

cane JLIT:
pvslinstjeq-)copl); break;

case -LOD:
pushtstacklbase(inst-reg-)copl) +I + instjeqg-)cop23);
break;

cane AT:
PaOf /# discard static link 5

base.ptr a popO; /0 restore base-ptr 5

if ((instjptr a papO) an-1) /# restore lnst-ptr 5

bra;return ERRORI /0 exit if lend'

case _MD:
push(pap() it papM1 break;

case -O:
pusblpqp( 11 papol; break;

case *NT:
pusb(!pop0)) break;

case ACS:
stkp~r - lnstjreg-)cupli break;

case -a:
I 0 pap0;

jap.,";
pehj- ((j/II D11;;

break;
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cast All:
i * pgpill
j' aPOPM
if I(% a J/jD )a 0)

pusb(j - (k # till

peebW + j - (k 41M
breaki

cam _11111THE3:
if I!popOI
instjtr a instjeq-)copi

breaks

case ARMSE
if IPOPO)

intstjptr ainst-re-)copl
breaks

can JON:

lbhMi1 J) 'I M. hk !j)I)
brook;

can *AN.&
if Ili a popl)) (0)

push (-i) I
tem

break;

can *EIp:

OItv popO;t")

P*0

Witk Is k is k+)
I a 1.1

bealk;

breaks
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return SUCCESS)
)

I/ee -4ee HeIeeeeeeeeet~4eeeeHO fH4e i 4NteUHf4 ef*4ee0eaee

/# push ,
/# Push a value onto the stack. The pushed value is also #/
/# returned. Stack overflow exits ith an error message. Q

lot push(val)
lIt valI

(

if (stkjtr )a STACK)
pvts('Stack overflow.');
mit01
)

return stackltkjtr+) a vail
)

/sIusssIIEIm uu eee~efeeesfeeae~4 e l

/0 pop C1
IC Return the value pepped froa the top of stack. #/

ant pop)
(

if ltkjtr)
return stack--stkjtr);

putsifltack unaerflo.')
nit()e
)
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/I base #/
It Return the base pointer for the given static level #/
It difference. Cl

int baseolevel)
lit levell

{.

REG nv.bael

newbase a b optr; If start with current bas*.Ptr #I
ubtle (level) C

-f a.bM a StAkt n base3; 1s chain to base pointer at the i/
-level; IC desired level l

return newbasa
)

Terainate use of execution emulator. CI

Is. neegeee CCCICCCCe CCCCCCCCCCCCCCCCCCC.CC.CCCCCCCCCC:CCIH /

1-eure(l)

freeistack)l It restore stack space VI
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finclude Isynde.h'

I' streq - test strings for equality C

streqlstrlpstr2) Ilutring sipality test C
char strl(l, str2CJ;

return ('strcep(strl,str2) )l

Is prestr - test if strlis1 beginning of str2 V/

prastr(strlgstr2) /4 test if stri is beginning of str2 Vl
char stril, str21I; I# return I f true, 0 othervise e/

whillstritil - WHO[i)
if (strIil+ - 0)

return El
if tstrlil -u 0)
return (I) 9

else raturn(0);

it isnueeric - test if a character is a number e

isammericlnue, M) /# numeric set test 0l
char awl
int eul

return isdilitimm) I& (um - '0') m ax);
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/ ie:::::::::: :::ieaeeeaeeies*eeeseeeetefe*eeeeeeee/

/o tsoper - convert lowrcase imWt to uppercase 'I

tmVpp (clj /I covert l w can character to ppr cao 0:
lit Chi /# return all others wmedlified 6/

C

retm lisleuveric) 7 (c)-'a'*'A' : ch);
I

/: tolower - convert lowrcase inputs to uppercase 0/

tolowerich) /# convert upper case character to lower case /
lit chl /# return all others uneodlfied 0

C

retors (isopperich) ? (ch)-'A'4'a' : ch);
)

/IIUUII::::i:::::::III::::::seseet~O~Ioeleeooeoeo:o:::::o:::::e

if Wurr - display i/0 errer sesale V/

boerrlfp) 1e hops irr faction f/
jet #fp!

(

putsllI/ errr occuretl')l
1

S
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Is clear fin4a - clear file-info block '

cltarjfinfo (fptr I /a clear filejinfo black V1
struct 4 ile~infa Sfptrj
inlt i

fptr-)fbuf a *
%trcpy(fptr-Xfnaae, *);
strcpyfptr-)fj anq, ");
%trcpyffptr-)fcrat, 0);
ttrcpy(fptr-)f .1ast,ll)
strcpyifptr-)f-conf,09n);
fptr-X#edit a 0;
fptr-)fupdate v 01
fptr-)f-avai 1 01
4 ptr-)f-root *01
fptr-)f.clip *01
for (I*0; M(10 i++)

fptr-Xuarktil 01

/4 clear-ast - clear ast-node S

clear ast Cast ptr) 1# clear astnoode 4
struct astjode #astjptr;

&9tptr->a.flaps 0;
ast~ptr-)avYalue 01
ast~ptr-)ajprod *0;
astjptr-)&_right 01
astjptr-)asui 0 1
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/0 clear tinio - clear terminal information structure 0

clemvtinfoltdfjtr) /# clear termjmfo 0
struct terajnfa *tdfjptri
{ ut ii

tdfjptr-)lints a 0;
tdf-jtr-chars a 0;
td4-ptr-)wlzo a 0;
tdfjtr-uxz~l] a 0;
tdf~ptr-)xxC2 z 01
tdf..ptr-)xxx(3l a 0;
tdf~ptr-)wxxt(4J a 01
tdf.ptr->uuu!5] a 0;
for (1.01 i(291 00*

strcpyltdfptr-)ceds~il,"*);
strcpyltdfptr-)initgmm);
strcpy(tdfjptr-)tab, );
strcpy~tdfptr-)vlide, @1)1
strcpy(tdfjptr-)div,1'*)
strcpyltdfptr-)clr,");
strcpy (tdf jtr->pos,') I
strcpy(tdfptr->eolp'l);
ttrcpy(tdf~ptr-)dc,"J);
%trcpy(tdfptr-)revv, )
tcpy(tdfptr-)nore,"l);

strcpy(tdfptr-)leff,')
strcpyltdf~ptr-)il, "*)

strcpyltdfptr->dl,lln'

%trcpyltdfjptr->fini,") I
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4V

I *IO****** 1a54*SH aelOHC4H ,*,,4*O*#440O.*0*44m** i**, ,,,,e

I. ADAI CODE LISTER Ic) Copyright November 1913 f/
/A CAPT. Michael L. McCracken, USFAFIT GCS-03D 11

As COD.LISTER #/

IA Read code file generated by the Adal compiler and produce a §/
IA formatted file of the code for user Inspection. V/

#include 'code.h' / pbeudo-code structures '1

define ERROR -1
Idefint READ 0
#define RE6 int

struct codeword codel /I pseudo-code memory V

tnt inst.ptr, / instruction pointer /
codejilei /* listing file pointer 0l

char codeonaml20], A0 output file name 0/

acodes(J400PII 4l instruction names 01
str(40]; / display line to build 4/
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GC ain C
IA Entry point and driver for code lister. C

maln~argc,argv)
1st wgc I input argument count VI
char Carvvfl; ICinput argument ptrs #/

puts(OCOD LISTER /1/3)

i f (argc ( 2) Cprepare source fleI name 0

puts(OUnspecified source file.');
exitf);

cjnitOJ

if (wgp )2)
strcpy(code.naa,argv(2lJ I

puts(' Filename for code listing? (default is n m ecodlst)');
gets (codenam)

* I if (!strlen(code nam))

strcpy(cod#.nam, rgvti U;
strcat(code.nme,'.codlst6);

printf ('Code list output file m %s.',codenmel;

if ((odejlile a creaticodename,0444)) - ERROR)

putml'Cmnnot create code listing file.');
eit";

elme
c.list(argv[Il)l

closu(codefile);
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Ia c ipit - initialize codes array wsith instruction strings. C

coded -NPI g 'JNP'; /4instruction nams '
codes( -CPYI - 'CPY,1
codesCSTOI * -STO';
codes( -CALI a 'CAL';
codes(-JPC3 - 'JPC';
codesC.EQUl a 'EGU';
cades(-NED] a 'NEQ';
codes(CLES] a*'LES';
codes(-LEG] - 'LEG';
codes(CSRT] a 18RT';
cadesE SEA] a 'SEG';
codvEitNEG] *'NEG';
codes(-ADD] *'ADD';
codes(-SUB] a* SUn';
codes(-NUL) *H'UL';
codes( DlV] a 101y';
codes(-LIT] - 'LT'
codes(-LODI a 'ion';
cadesE.RET] a 'RET'
coduiC AND] v 'AND';

*codest OR] - -OR';
cadesC NOT] a 'NOT'
codesCDOCS] *'DCS'1
codus(-NOD] a bN0D';
codes(-REM] a 'REM';
codts[ AND-THENIu 'AND-THEN';
codes( OR ELSE] a 'OR ELSE';

codestC)IS3 a 'ADS';
cadesEIP] * EIP,;
codesi MOP] a 'NOOP;
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1# cjlist - product code listing and output to a file I

c..listic name)
char c-.naaetl;

itcha - e,nuejeadlnstr-num,i ,cont;
chrstrtlofl

instrnum a 01
strcat (cname, .cad');-
if ((tc- ile a open(c~name,READ)) an ERROR)

puts(Il/0 error opening code file 0)
puts (c name) 1
puts'.*);

( IC read until end of file C
while (num-read *read(cjfile,&code, (sizeof(struct code-word))

It coot)

if (num-read -a ERROR)
puts(I1/O error reading code file.');

else

strcpy(str,'); iC nitialize as empty C
catnum(str,instrnum+s); /# instruction number C
strcat(str, '1
if M( a code.copcode) >0)

strcat(str,codes~ifl; /C instruction string C
strcat(str,4 0);
catnue(str,code.copl); /# operand I C
strcat(strl,');
catnumstr,code.cop2)j /# operand 2 C

if 1i - 0) ICend of file before Vl
ICactual file end C

strcpylstr,69);
cant a 0

else
strcat(strINVALID'); i nvalid instruction C

strcatistr,'8)1
I strlen(str)l
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if (witv(cod*.filestr,0i) !
puts(0Il0 error writing code listing file.'l;

)
)

I

close(c€ile) I

If

IA catnu l
:, Concatenate the ABCK repremntation of a signed Cl
It numer to the end of the given string. nl

:/e:::: ::: :::: ::;: Blum::iul :::e:eHCCCCt eCfliH eeCt efttCtete:

catnulstringval)
char Ostring;
Jnt vail

char s1711 /C temporary string #:

RES i; Is string indes #l

if (val (0) {
strcatIstring,6-) Is negative value #/

!: Val a-Vail;

nt• 6] 0 ; I generate characters in c/
do{ It revwre order 0l

s-il a val 1 10 + '0';
) while (val • val I 10)3

strcat(string&sti I; IC concatenate number stringl/
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Michael L. McCracken was born on 25 July 1952 in Glen

Ridge, New Jersey to Robert A. McCracken and Lilian B.

(Sarter) McCracken. He attended Sehome High School in

Bellingham, Washington and graduated cum laude in 1970.

He attended Western Washington State College in

Bellingham, Washington where he earned a Bachelors of Arts

degree in mathematics in June 1977. In July 1978 he

entered Officer's Training School at Medina Annex,

Lackland Air Force Base and was commissioned in October..4
His first active duty Air Force assignment was with the

2nd Communications Squadron which later became Detachment

1 4602 CPUSS at Lowry AFB, Colorado. He then entered the

Air Force Institute of Technology in June 1982 as a

graduate student in computer science.

Captain McCracken was married to Kerri Lee Lobberegt

on 15 May 1976 in Port Gamble, Washington. They have a

daughter, April Lynn, born 25 February 1980 and a son,

Patrick Logan, born 12 December 1981.

Permanent address: 5191 N.E. Ponderosa Drive
Hansville, Washington 98340
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